ﻻ يوجد ملخص باللغة العربية
The building blocks of 6d $(1,0)$ SCFTs include certain rank one theories with gauge group $G=SU(3),SO(8),F_4,E_{6,7,8}$. In this paper, we propose a universal recursion formula for the elliptic genera of all such theories. This formula is solved from the elliptic blowup equations introduced in our previous paper. We explicitly compute the elliptic genera and refined BPS invariants, which recover all previous results from topological string theory, modular bootstrap, Hilbert series, 2d quiver gauge theories and 4d $mathcal{N}=2$ superconformal $H_{G}$ theories. We also observe an intriguing relation between the $k$-string elliptic genus and the Schur indices of rank $k$ $H_{G}$ SCFTs, as a generalization of Lockhart-Zottos conjecture at the rank one cases. In a subsequent paper, we deal with all other non-Higgsable clusters with matters.
Given the recent geometrical classification of 6d $(1,0)$ SCFTs, a major question is how to compute for this large class their elliptic genera. The latter encode the refined BPS spectrum of the SCFTs, which determines geometric invariants of the asso
We establish the elliptic blowup equations for E-strings and M-strings and solve elliptic genera and refined BPS invariants from them. Such elliptic blowup equations can be derived from a path integral interpretation. We provide toric hypersurface co
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mi
We consider a sequence of blowup solutions of a two dimensional, second order elliptic equation with exponential nonlinearity and singular data. This equation has a rich background in physics and geometry. In a work of Bartolucci-Chen-Lin-Tarantello
We apply the modular approach to computing the topological string partition function on non-compact elliptically fibered Calabi-Yau 3-folds with higher Kodaira singularities in the fiber. The approach consists in making an ansatz for the partition fu