ترغب بنشر مسار تعليمي؟ اضغط هنا

Saddlepoint approximations for spatial panel data models

133   0   0.0 ( 0 )
 نشر من قبل Chaonan Jiang
 تاريخ النشر 2020
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop new higher-order asymptotic techniques for the Gaussian maximum likelihood estimator in a spatial panel data model, with fixed effects, time-varying covariates, and spatially correlated errors. Our saddlepoint density and tail area approximation feature relative error of order $O(1/(n(T-1)))$ with $n$ being the cross-sectional dimension and $T$ the time-series dimension. The main theoretical tool is the tilted-Edgeworth technique in a non-identically distributed setting. The density approximation is always non-negative, does not need resampling, and is accurate in the tails. Monte Carlo experiments on density approximation and testing in the presence of nuisance parameters illustrate the good performance of our approximation over first-order asymptotics and Edgeworth expansions. An empirical application to the investment-saving relationship in OECD (Organisation for Economic Co-operation and Development) countries shows disagreement between testing results based on first-order asymptotics and saddlepoint techniques.



قيم البحث

اقرأ أيضاً

In this paper we study methods for estimating causal effects in settings with panel data, where some units are exposed to a treatment during some periods and the goal is estimating counterfactual (untreated) outcomes for the treated unit/period combi nations. We propose a class of matrix completion estimators that uses the observed elements of the matrix of control outcomes corresponding to untreated unit/periods to impute the missing elements of the control outcome matrix, corresponding to treated units/periods. This leads to a matrix that well-approximates the original (incomplete) matrix, but has lower complexity according to the nuclear norm for matrices. We generalize results from the matrix completion literature by allowing the patterns of missing data to have a time series dependency structure that is common in social science applications. We present novel insights concerning the connections between the matrix completion literature, the literature on interactive fixed effects models and the literatures on program evaluation under unconfoundedness and synthetic control methods. We show that all these estimators can be viewed as focusing on the same objective function. They differ solely in the way they deal with identification, in some cases solely through regularization (our proposed nuclear norm matrix completion estimator) and in other cases primarily through imposing hard restrictions (the unconfoundedness and synthetic control approaches). The proposed method outperforms unconfoundedness-based or synthetic control estimators in simulations based on real data.
We consider a testing problem for cross-sectional dependence for high-dimensional panel data, where the number of cross-sectional units is potentially much larger than the number of observations. The cross-sectional dependence is described through a linear regression model. We study three tests named the sum test, the max test and the max-sum test, where the latter two are new. The sum test is initially proposed by Breusch and Pagan (1980). We design the max and sum tests for sparse and non-sparse residuals in the linear regressions, respectively.And the max-sum test is devised to compromise both situations on the residuals. Indeed, our simulation shows that the max-sum test outperforms the previous two tests. This makes the max-sum test very useful in practice where sparsity or not for a set of data is usually vague. Towards the theoretical analysis of the three tests, we have settled two conjectures regarding the sum of squares of sample correlation coefficients asked by Pesaran (2004 and 2008). In addition, we establish the asymptotic theory for maxima of sample correlations coefficients appeared in the linear regression model for panel data, which is also the first successful attempt to our knowledge. To study the max-sum test, we create a novel method to show asymptotic independence between maxima and sums of dependent random variables. We expect the method itself is useful for other problems of this nature. Finally, an extensive simulation study as well as a case study are carried out. They demonstrate advantages of our proposed methods in terms of both empirical powers and robustness for residuals regardless of sparsity or not.
130 - Luciano de Castro 2017
This paper develops theory for feasible estimators of finite-dimensional parameters identified by general conditional quantile restrictions, under much weaker assumptions than previously seen in the literature. This includes instrumental variables no nlinear quantile regression as a special case. More specifically, we consider a set of unconditional moments implied by the conditional quantile restrictions, providing conditions for local identification. Since estimators based on the sample moments are generally impossible to compute numerically in practice, we study feasible estimators based on smoothed sample moments. We propose a method of moments estimator for exactly identified models, as well as a generalized method of moments estimator for over-identified models. We establish consistency and asymptotic normality of both estimators under general conditions that allow for weakly dependent data and nonlinear structural models. Simulations illustrate the finite-sample properties of the methods. Our in-depth empirical application concerns the consumption Euler equation derived from quantile utility maximization. Advantages of the quantile Euler equation include robustness to fat tails, decoupling of risk attitude from the elasticity of intertemporal substitution, and log-linearization without any approximation error. For the four countries we examine, the quantile estimates of discount factor and elasticity of intertemporal substitution are economically reasonable for a range of quantiles above the median, even when two-stage least squares estimates are not reasonable.
This paper studies inference in linear models whose parameter of interest is a high-dimensional matrix. We focus on the case where the high-dimensional matrix parameter is well-approximated by a ``spiked low-rank matrix whose rank grows slowly compar ed to its dimensions and whose nonzero singular values diverge to infinity. We show that this framework covers a broad class of models of latent-variables which can accommodate matrix completion problems, factor models, varying coefficient models, principal components analysis with missing data, and heterogeneous treatment effects. For inference, we propose a new ``rotation-debiasing method for product parameters initially estimated using nuclear norm penalization. We present general high-level results under which our procedure provides asymptotically normal estimators. We then present low-level conditions under which we verify the high-level conditions in a treatment effects example.
179 - Takuya Ishihara 2020
In this study, we develop a novel estimation method of the quantile treatment effects (QTE) under the rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumpti ons and propose a parametric estimation based on the minimum distance method. However, the minimum distance estimation using this process is computationally demanding when the dimensionality of covariates is large. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance method. We then show consistency and asymptotic normality of our estimator. Monte Carlo studies indicate that our estimator performs well in finite samples. Last, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and of TV watching on child cognitive development.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا