ترغب بنشر مسار تعليمي؟ اضغط هنا

Reservoir engineering with arbitrary temperatures for spin systems and quantum thermal machine with maximum efficiency

344   0   0.0 ( 0 )
 نشر من قبل Taysa Mendon\\c{c}a
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Abstract Reservoir engineering is an important tool for quantum information science and quantum thermodynamics since it allows for preparing and/or protecting special quantum states of single or multipartite systems or to investigate fundamental questions of the thermodynamics as quantum thermal machines and their efficiencies. Here we employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system. To this end, we firstly engineer an appropriate interaction between a qubit system, a carbon nuclear spin, to a fermionic reservoir, in our case a large number of hydrogen nuclear spins that acts as the spins bath. This carbon-hydrogen structure is present in a polycrystalline adamantane, which was used in our experimental setup. The required interaction engineering is achieved by applying a specific sequence of radio-frequency pulses using Nuclear Magnetic Resonance (NMR), while the temperature of the bath can be controlled by appropriate preparation of the initial hydrogen nuclear spin state, being the predicted results in very good agreement with the experimental data. As an application we implemented a single qubit quantum thermal machine which operates at a single reservoir at effective negative temperature whose efficiency is always 100%, independent of the unitary transformation performed on the qubit system, as long as it changes the qubit state.

قيم البحث

اقرأ أيضاً

Abstract We perform an experiment in which a quantum heat engine works under two reservoirs, one at a positive spin temperature and the other at an effective negative spin temperature i.e., when the spin system presents population inversion. We show that the efficiency of this engine can be greater than that when both reservoirs are at positive temperatures. We also demonstrate the counter-intuitive result that the Otto efficiency can be beaten only when the quantum engine is operating in the finite-time mode.
346 - Si-Yuan Bai , Jun-Hong An 2021
As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that $N$ two-level systems (TLSs) located near a one-dimensional waveguide can generate a SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.
The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics repres ents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.
This theoretical proposal investigates how resonant interactions occurring when a harmonic oscillator is fed with a stream of entangled qubits allow us to stabilize squeezed states of the harmonic oscillator. We show that the properties of the squeez ed state stabilized by this engineered reservoir, including the squeezing strength, can be tuned at will through the parameters of the input qubits, albeit in tradeoff with the convergence rate. We also discuss the influence of the type of entanglement in the input, from a pairwise case to a more widely distributed case. This paper can be read in two ways: either as a proposal to stabilize squeezed states, or as a step towards treating quantum systems with time-entangled reservoir inputs.
We show how to design different couplings between a single ion trapped in a harmonic potential and an environment. This will provide the basis for the experimental study of the process of decoherence in a quantum system. The coupling is due to the ab sorption of a laser photon and subsequent spontaneous emission. The variation of the laser frequencies and intensities allows one to ``engineer the coupling and select the master equation describing the motion of the ion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا