ﻻ يوجد ملخص باللغة العربية
A concept for continuously tunable titanium-sapphire (Ti:Sa) lasers using dispersion prisms is under investigation for the ARIEL (Advanced Rare IsotopE Laboratory) laser ion source at TRIUMF (Canadas particle accelerator center). Wavelength selection for pulsed Ti:Sa lasers used in hot cavity laser resonance ionization spectroscopy is usually done with birefringent filters (BRFs) and etalons or diffraction gratings. For resonance ionization spectroscopy a laser system allowing a continuous wavelength scan is necessary. Tunable lasers based on BRFs and etalons have high output powers however require synchronized optimization for continuous laser wavelength scans and are therefore laborious to use in scanning applications. Diffraction grating tuned lasers can provide continuous wavelength scan over 200 nm range but typically have lower output laser power due to the grating deformation under high pumping power. Aiming to overcome both shortcomings a laser design based on prisms as dispersing element has been revisited. Simulations on the beam path and optical reflectivity are done which show that these losses can be minimized to around 0.04 % for a tuning range from 700 nm up to 920 nm. Further improvement on the tuning range and reduction on the linewidth will be pursued.
Titanium doped sapphire (Ti:sapphire) is a laser gain material with broad gain bandwidth benefiting from the material stability of sapphire. These favorable characteristics of Ti:sapphire have given rise to femtosecond lasers and optical frequency co
A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillator
We demonstrate experimentally the full tunability of a coherent femtosecond source in the whole ultraviolet spectral region. The experiment relies on the technique of high-order harmonic generation driven by a near-infrared parametric laser source in
Resonance ionization laser ion sources are efficient and element selective ion sources, which are particularly well suited for radioactive ion beam facilities. Using TRIUMFs off-line laser ion source test stand with a system of tunable titanium sapph
We numerically analyze a delay differential equation model of a short-cavity semiconductor laser with an intracavity frequency swept filter and reveal a complex bifurcation structure responsible for the asymmetry of the output characteristics of this