ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuously tunable pulsed Ti:Sa laser self-seeded by an extended grating cavity

113   0   0.0 ( 0 )
 نشر من قبل Ruohong Li
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A continuously tunable titanium:sapphire (Ti:Sa) laser self-seeded by an extended grating cavity was demonstrated and characterized. By inserting a partially reflecting mirror inside the cavity of a classic single-cavity grating laser, two oscillators are created: a broadband power oscillator, and a narrowband oscillator with a prism beam expander and a diffraction grating in Littrow configuration. By coupling the grating cavity oscillation into the power oscillator, a power-enhanced narrow-linewidth laser oscillation is achieved. Compared to the classic grating laser, this simple modification significantly increases the laser output power without considerably broadening the linewidth. With most of the oscillating laser power confined inside the broadband power cavity and lower power incident onto the grating, the new configuration also allows higher pump power, which is typically limited by the thermal deformation of the grating coating at high oscillation power.

قيم البحث

اقرأ أيضاً

We theoretically present a design of self-starting operation of microcombs based on laser-cavity solitons in a system composed of a micro-resonator nested in and coupled to an amplifying laser cavity. We demonstrate that it is possible to engineer th e modulational-instability gain of the systems zero state to allow the start-up with a well-defined number of robust solitons. The approach can be implemented by using the system parameters, such as the cavity length mismatch and the gain shape, to control the number and repetition rate of the generated solitons. Because the setting does not require saturation of the gain, the results offer an alternative to standard techniques that provide laser mode-locking.
A concept for continuously tunable titanium-sapphire (Ti:Sa) lasers using dispersion prisms is under investigation for the ARIEL (Advanced Rare IsotopE Laboratory) laser ion source at TRIUMF (Canadas particle accelerator center). Wavelength selection for pulsed Ti:Sa lasers used in hot cavity laser resonance ionization spectroscopy is usually done with birefringent filters (BRFs) and etalons or diffraction gratings. For resonance ionization spectroscopy a laser system allowing a continuous wavelength scan is necessary. Tunable lasers based on BRFs and etalons have high output powers however require synchronized optimization for continuous laser wavelength scans and are therefore laborious to use in scanning applications. Diffraction grating tuned lasers can provide continuous wavelength scan over 200 nm range but typically have lower output laser power due to the grating deformation under high pumping power. Aiming to overcome both shortcomings a laser design based on prisms as dispersing element has been revisited. Simulations on the beam path and optical reflectivity are done which show that these losses can be minimized to around 0.04 % for a tuning range from 700 nm up to 920 nm. Further improvement on the tuning range and reduction on the linewidth will be pursued.
We demonstrate dual-comb generation from an all-polarization-maintaining dual-color ytterbium (Yb) fiber laser. Two pulse trains with center wavelengths at 1030 nm and 1060 nm respectively are generated within the same laser cavity with a repetition rate around 77 MHz. Dual-color operation is induced using a tunable mechanical spectral filter, which cuts the gain spectrum into two spectral regions that can be independently mode-locked. Spectral overlap of the two pulse trains is achieved outside the laser cavity by amplifying the 1030-nm pulses and broadening them in a nonlinear fiber. Spatially overlapping the two arms on a simple photodiode then generates a down-converted radio frequency comb. The difference in repetition rates between the two pulse trains and hence the line spacing of the down-converted comb can easily be tuned in this setup. This feature allows for a flexible adjustment of the tradeoff between non-aliasing bandwidth vs. measurement time in spectroscopy applications. Furthermore, we show that by fine-tuning the center-wavelengths of the two pulse trains, we are able to shift the down-converted frequency comb along the radio-frequency axis. The usability of this dual-comb setup is demonstrated by measuring the transmission of two different etalons while the laser is completely free-running.
Fast speckle suppression is crucial for time-resolved full-field imaging with laser illumination. Here, we introduce a method to accelerate the spatial decoherence of laser emission, achieving speckle suppression in the nanosecond integration time sc ale. The method relies on the insertion of an intracavity phase diffuser into a degenerate cavity laser to break the frequency degeneracy of transverse modes and broaden the lasing spectrum. The ultrafast decoherence of laser emission results in the reduction of speckle contrast to $3%$ in less than 1 nanosecond.
108 - H. Zhang , T. Wang , J. Tian 2021
In this work, we propose and numerically investigate a two-dimensional microlaser based on the concept of bound states in the continuum (BIC). The device consists of a thin gain layer (Rhodamine 6G dye-doped silica) sandwiched between two high-contra st-grating layers. The structure supports various BIC modes upon a proper choice of topological parameters; in particular it supports a high-Q quasi-BIC mode when partially breaking a bound state in the continuum at $Gamma$ point. The optically-pumped gain medium provides sufficient optical gain to compensate the quasi-BIC mode losses, enabling lasing with ultra-low pump threshold (fluence of 17 $mu$J/cm$^2$) and very narrow optical linewidth in the visible range. This innovative device displays distinguished sensing performance for gas detection, and the emission wavelength sensitively shifts to the longer wavelength with the changing of environment refractive index (in order of $5 times 10^{-4}$). The achieved bulk sensitivity is 221 nm/RIU with a high signal to noise ratio, and a record-high figure of merit reaches to 4420 RIU$^{-1}$. This ultracompact and low threshold quasi-BIC laser facilitated by the ultra-narrow resonance can serve as formidable candidate for on-chip gas sensor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا