ﻻ يوجد ملخص باللغة العربية
Two steps phase shifting interferometry has been a hot topic in the recent years. We present a comparison study of 12 representative self--tunning algorithms based on two-steps phase shifting interferometry. We evaluate the performance of such algorithms by estimating the phase step of synthetic and experimental fringe patterns using 3 different normalizing processes: Gabor Filters Bank (GFB), Deep Neural Networks (DNNs) and Hilbert Huang Transform (HHT); in order to retrieve the background, the amplitude modulation and noise. We present the variants of state-of-the-art phase step estimation algorithms by using the GFB and DNNs as normalization preprocesses, as well as the use of a robust estimator such as the median to estimate the phase step. We present experimental results comparing the combinations of the normalization processes and the two steps phase shifting algorithms. Our study demonstrates that the quality of the retrieved phase from of two-step interferograms is more dependent of the normalizing process than the phase step estimation method.
We review the status of searches for sterile neutrinos in the $sim 1$ eV range, with an emphasis on the latest results from short baseline oscillation experiments and how they fit within sterile neutrino oscillation models. We present global fit resu
We review the current state of automatic differentiation (AD) for array programming in machine learning (ML), including the different approaches such as operator overloading (OO) and source transformation (ST) used for AD, graph-based intermediate re
The orbital angular momentum of quarks and gluons contributes significantly to the proton spin budget and attracted a lot of attention in the recent years, both theoretically and experimentally. We summarize the various definitions of parton orbital
Observations from the two STEREO-spacecraft give us for the first time the possibility to use stereoscopic methods to reconstruct the 3D solar corona. Classical stereoscopy works best for solid objects with clear edges. Consequently an application of
We present the evaluation of a closed form formula for the calculation of the original step between two randomly shifted fringe patterns. Our proposal extends the Gram--Schmidt orthonormalization algorithm for fringe pattern. Experimentally, the phas