ﻻ يوجد ملخص باللغة العربية
In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in part on the current research interests of the LISA scientific community in the area of fundamental physics. We organize these directions through a science-first approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.
The explosive coalescence of two black holes 1.3 billion light years away has for the very first time allowed us to peer into the extreme gravity region of spacetime surrounding these events. With these maximally compact objects reaching speeds up to
We propose a high precision satellite experiment to further test Einsteins General Relativity and constrain extended theories of gravity. We consider the frequency shift of a photon radially exchanged between two observers located on Earth and on a s
After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large size ring-lasers able to measure the de Sitter and Lense-Thirring effects. T
The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - a fundamental postulate of Einsteins theory of general relativity. By using a c
The use of four Lagrange points of the Sun/Earth system for fundamental physics experiments in space is presented. L1, L2, L4 and L5 rotating rigidly together with the Earth form a natural reference frame at the scale of the inner solar system. The i