ترغب بنشر مسار تعليمي؟ اضغط هنا

Sun-Earth Lagrange reference for fundamental physics and navigation

176   0   0.0 ( 0 )
 نشر من قبل Angelo Tartaglia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The use of four Lagrange points of the Sun/Earth system for fundamental physics experiments in space is presented. L1, L2, L4 and L5 rotating rigidly together with the Earth form a natural reference frame at the scale of the inner solar system. The idea which is discussed in the paper considers the possibility of locating four spacecraft in the four cited Lagrange points and exchanging electromagnetic pulses among them. Including stations on earth, various closed paths for the pulses are possible. Time of flight measurements would be performed. The time of flight difference between right- and left-handed circuits is proportional to the angular momentum of the Sun and the detection of the effect would reach accuracies better than 1% depending on the accuracy of the clock. The four points could also be used as artificial pulsars for a relativistic positioning system at the scale of the solar system. Additional interesting possibilities include detection of a galactic gravito-magnetic field and also, using a global configuration as a zero area Sagnac contour, detection of gravitational waves. More opportunities are also mentioned.



قيم البحث

اقرأ أيضاً

In this paper, which is of programmatic rather than quantitative nature, we aim to further delineate and sharpen the future potential of the LISA mission in the area of fundamental physics. Given the very broad range of topics that might be relevant to LISA, we present here a sample of what we view as particularly promising directions, based in part on the current research interests of the LISA scientific community in the area of fundamental physics. We organize these directions through a science-first approach that allows us to classify how LISA data can inform theoretical physics in a variety of areas. For each of these theoretical physics classes, we identify the sources that are currently expected to provide the principal contribution to our knowledge, and the areas that need further development. The classification presented here should not be thought of as cast in stone, but rather as a fluid framework that is amenable to change with the flow of new insights in theoretical physics.
After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large size ring-lasers able to measure the de Sitter and Lense-Thirring effects. T he instrument will be located at the underground laboratory of GranSasso, in Italy. We describe the preliminary actions and measurements already under way and present the full road map to GINGER. The intermediate apparatuses GP2 and GINGERino are described. GINGER is expected to be fully operating in few years.
231 - Angelo Tartaglia 2020
The paper concerns the use of satellites of the Galileo constellation for relativistic positioning and for measurements of the gravito-magnetic effects induced by the angular momentum both of the Earth and of the dark halo of the Milky Way. The exper imental approach is based on the generalized Sagnac effect, induced both by the rotation of the device and the fact that the observer is located within the gravitational field of a spinning mass. Among the possible sources there is also the angular momentum of the dark halo of the Milky Way. Time modulation of the expected signal would facilitate its disentanglement from the other contributions. The modulation could be obtained using satellites located on different orbital planes.
88 - Zack Carson 2020
The explosive coalescence of two black holes 1.3 billion light years away has for the very first time allowed us to peer into the extreme gravity region of spacetime surrounding these events. With these maximally compact objects reaching speeds up to 60% the speed of light, collision events such as these create harsh spacetime environments where the fields are strong, non-linear, and highly dynamical -- a place yet un-probed in human history. On September 14, 2015, the iconic chirp signal from such an event was registered simultaneously by both of the Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors -- by an unparalleled feat of modern engineering. Dubbed GW150914, this gravitational wave event paved the way for an entirely new observing window into the universe, providing for the unique opportunity to probe fundamental physics from an entirely new viewpoint. Since this historic event, the LIGO/Virgo collaboration (LVC) has further identified ten additional gravitational wave signals in its first two observing runs, composed of a myriad of different events. Important among these new cataloged detections is GW170817, the first detection of gravitational waves from the merger of two neutron stars, giving way to new insight into the supranuclear physics resident within. This thesis explores this new unique opportunity to harness the information encoded within gravitational waves in regards to their source whence they came, to probe fundamental physics from an entirely new perspective. Part A focuses on probing nuclear physics by way of the tidal information encoded within gravitational waves from binary neutron star mergers. Part B focuses on testing general relativity from such events by way of the remnants of such spacetime encoded within the gravitational wave signal.
The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phe nomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا