ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant thermal energy transfer to magnons in a ferromagnetic nanolayer

213   0   0.0 ( 0 )
 نشر من قبل Alexey Scherbakov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Energy harvesting is a modern concept which makes dissipated heat useful by transferring thermal energy to other excitations. Most of the existing principles for energy harvesting are realized in systems which are heated continuously, for example generating DC voltage in thermoelectric devices. Here we present the concept of high-frequency energy harvesting where the dissipated heat in a sample excites resonant magnons in a 5-nm thick ferromagnetic metal layer. The sample is excited by femtosecond laser pulses with a repetition rate of 10 GHz which results in temperature modulation at the same frequency with amplitude ~0.1 K. The alternating temperature excites magnons in the ferromagnetic nanolayer which are detected by measuring the net magnetization precession. When the magnon frequency is brought onto resonance with the optical excitation, a 12-fold increase of the amplitude of precession indicates efficient resonant heat transfer from the lattice to coherent magnons. The demonstrated principle may be used for energy harvesting in various nanodevices operating at GHz and sub-THz frequency ranges.

قيم البحث

اقرأ أيضاً

We present a theoretical study of the the effects of off-resonant polarized optical fields on a ferromagnetic model system. We determine the light-induced dynamics of itinerant carriers in a system that includes magnetism at the mean-field level and spin-orbit coupling. We investigate an all-optical switching process for ferromagnets, which is close to the one proposed by Qaiumzadeh et al. [Phys. Rev. B 88, 064416] for the inverse Faraday effect. By computing the optically driven coherent dynamics together with incoherent scattering mechanisms we go beyond a perturbation expansion in powers of the optical field. We find an important contribution of a dynamic Stark effect coupling of the Raman type between the magnetic bands, which leads to a polarization-dependent effect on the magnetization that may support or oppose switching, but also contributes to demagnetization via an increase in electronic energy.
Spin pumping by ferromagnetic resonance is one of the most common technique to determine spin hall angles, Edelstein lengths or spin diffusion lengths of a large variety of materials. In recent years, rising concerns have appeared regarding the inter pretation of these experiments, underlining that the signal could arise purely from thermoelectric effects, rather than from coherent spin pumping. Here, we propose a method to evaluate the presence or absence of thermal effects in spin pumping signals, by combining bolometry and spin pumping by ferromagnetic resonance measurements, and comparing their timescale. Using a cavity to perform the experiments on PtPermalloy and La0.7Sr0.3MnO3Pt samples, we conclude on the absence of any measurable thermoelectric contribution such as the spin Seebeck and anomalous Nernst effects at resonance
We report a study on spin conductance in ultra-thin films of Yttrium Iron Garnet (YIG), where spin transport is provided by propagating spin waves, that are generated and detected by direct and inverse spin Hall effects in two Pt wires deposited on t op. While at low current the spin conductance is dominated by transport of thermal magnons, at high current, the spin conductance is dominated by low-damping non-equilibrium magnons thermalized near the spectral bottom by magnon-magnon interaction, with consequent a sensitivity to the applied magnetic field and a longer decay length. This picture is supported by microfocus Brillouin Light Scattering spectroscopy.
Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multifer roics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
The distribution is calculated of the electron spin polarization under current-driven spin injection from a probe to a ferromagnetic film. It is shown that the main parameters determining difference of the spin polarization from the equilibrium value are the current density and the spin polarization of the probe material, while the relation between the probe diameter and the spin diffusion length influences the result very weakly, to a certain extent. A possibility is shown of reaching inverse population of the spin subbands at distances from the probe boundary comparable with the spin diffusion length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا