ترغب بنشر مسار تعليمي؟ اضغط هنا

Negligible thermal contributions to the spin pumping signal in ferromagnetic metal-Platinum bilayers

83   0   0.0 ( 0 )
 نشر من قبل Paul No\\\"el
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin pumping by ferromagnetic resonance is one of the most common technique to determine spin hall angles, Edelstein lengths or spin diffusion lengths of a large variety of materials. In recent years, rising concerns have appeared regarding the interpretation of these experiments, underlining that the signal could arise purely from thermoelectric effects, rather than from coherent spin pumping. Here, we propose a method to evaluate the presence or absence of thermal effects in spin pumping signals, by combining bolometry and spin pumping by ferromagnetic resonance measurements, and comparing their timescale. Using a cavity to perform the experiments on PtPermalloy and La0.7Sr0.3MnO3Pt samples, we conclude on the absence of any measurable thermoelectric contribution such as the spin Seebeck and anomalous Nernst effects at resonance

قيم البحث

اقرأ أيضاً

The authors have investigated the contribution of the surface spin waves to spin pumping. A Pt/NiFe bilayer has been used for measuring spin waves and spin pumping signals simultaneously. The theoretical framework of spin pumping resulting from ferro magnetic resonance has been extended to incorporate spin pumping due to spin waves. Equations for the effective area of spin pumping due to spin waves have been derived. The amplitude of the spin pumping signal resulting from travelling waves is shown to decrease more rapidly with precession frequency than that resulting from standing waves and show good agreement with the experimental data.
Spin transfer torque (STT) driven by a charge current plays a key role in magnetization switching in heavy-metal/ferromagnetic-metal structures. The STT efficiency defined by the ratio between the effective field due to STT and the current density, i s required to be improved to reduce energy compulsions in the STT-based spintronic devices. In this work, using the harmonic Hall measurement method, we experimentally studied the STT efficiency in platinum(Pt)/FM structures as a function of the Pt thickness. We found that the STT efficiency strongly depends on the Pt thickness and reaches a maximum value of 4.259 mT/($10^6$A/$cm^{2}$) for the 1.8-nm-thickness Pt sample. This result indicates that competition between spin Hall effect (SHE) and Rashba effect as well as spin diffusion process across the Pt layer determines the Pt thickness for the maximum STT efficiency. We demonstrated the role played by the spin diffusion besides the spin current generation mechanisms in improvement of the STT efficiency, which is helpful in designing STT-based devices.
We systematically measured the DC voltage V_ISH induced by spin pumping together with the inverse spin Hall effect in ferromagnet/platinum bilayer films. In all our samples, comprising ferromagnetic 3d transition metals, Heusler compounds, ferrite sp inel oxides, and magnetic semiconductors, V_ISH invariably has the same polarity. V_ISH furthermore scales with the magnetization precession cone angle with a universal prefactor, irrespective of the magnetic properties, the charge carrier transport mechanism or type. These findings quantitatively corroborate the present theoretical understanding of spin pumping in combination with the inverse spin Hall effect.
We theoretically investigate a manipulation method of nonequilibrium spin accumulation in the paramagnetic normal metal of a spin pumping system, by using the spin precession motion combined with the spin diffusion transport. We demonstrate based on the Bloch-Torrey equation that the direction of the nonequilibrium spin accumulation is changed by applying an additional external magnetic field, and consequently, the inverse spin Hall voltage in an adjacent paramagnetic heavy metal changes its sign. We find that the spin relaxation time and the spin diffusion length are simultaneously determined by changing the magnitude of the external magnetic field and the thickness of the normal metal in a commonly-used spin pumping system.
115 - M. Zhu , M. J. Wilson , B. L. Sheu 2007
We report magnetization and magetoresistance measurements in hybrid ferromagnetic metal/semiconductor heterostructures comprised of MnAs/(Ga,Mn)As bilayers. Our measurements show that the (metallic) MnAs and (semiconducting) (Ga,Mn)As layers are exch ange coupled, re- sulting in an exchange biasing of the magnetically softer (Ga,Mn)As layer that weakens with layer thickness. Magnetoresistance measurements in the current-perpendicular-to-the-plane geometry show a spin valve effect in these self-exchange biased bilayers. Similar measurements in MnAs/p- GaAs/(Ga,Mn)As trilayers show that the exchange coupling diminishes with spatial separation between the layers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا