ﻻ يوجد ملخص باللغة العربية
Neutrinoless double beta decay (0vb{eta}b{eta}) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research beyond Standard Model and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0vb{eta}b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extract information on the 0vb{eta}b{eta} Nuclear Matrix Elements. In DCE reactions and b{eta}b{eta} decay indeed the initial and final nuclear states are the same and the transition operators have similar structure. Thus the measurement of the DCE absolute cross-sections can give crucial information on b{eta}b{eta} matrix elements. In a wider view, the NUMEN international collaboration plans a major upgrade of the INFN-LNS facilities in the next years in order to increase the experimental production of nuclei of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest as candidates for 0vb{eta}b{eta}.
The possibility of observing neutrinoless double beta decay offers the opportunity of determining the neutrino mass IF the nuclear matrix element were known. Theoretical calculations are uncertain and measurements of the occupations of valence orbits
Neutrinoless double beta decay (0{ u}b{eta}b{eta}) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their ow
The article describes the main achievements of the NUMEN project together with an updated and detailed overview of the related R&D activities and theoretical developments. NUMEN proposes an innovative technique to access the nuclear matrix elements e
We report the final result of the CUORICINO experiment. Operated between 2003 and 2008, with a total exposure of 19.75 kg y of 130Te, CUORICINO was able to set a lower bound on the 130Te 0nDBD half-life of 2.8 10^{24} years at 90% C.L. The limit here
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to charge-current solar neutrino interactions with BB nuclei of $^{76}$Ge, $^{82}$Se, $^{100}$Mo, $^{130}$