ترغب بنشر مسار تعليمي؟ اضغط هنا

Ballistic Properties of Highly Stretchable Graphene Kirigami Pyramid

63   0   0.0 ( 0 )
 نشر من قبل Pedro Autreto A.S.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene kirigami (patterned cuts) can be an effective way to improve some of the graphene mechanical and electronic properties. In this work, we report the first study of the mechanical and ballistic behavior of single and multilayered graphene pyramid kirigami (GKP). We have carriedout fully atomistic reactive molecular dynamics simulations. GPK presents a unique kinetic energy absorption due to its topology that creates multi-steps dissipation mechanisms, which block crack propagation. Our results show that even having significantly less mass, GKP can outperform graphene structures with similar dimensions in terms of absorbing kinetic energy.



قيم البحث

اقرأ أيضاً

Anisotropic materials, with orientation-dependent properties, have attracted more and more attention due to their compelling tunable and flexible performance in electronic and optomechanical devices. So far, two-dimensional (2D) black phosphorus show s the largest known anisotropic behavior, which is highly desired for synaptic and neuromorphic devices, multifunctional directional memories, and even polarization-sensitive photodetector, whereas it is unstable at ambient conditions. Recently, 2D few-layered As2S3 with superior chemical stability was successfully exfoliated in experiments. However, the electronic and mechanical properties of monolayer and bilayer As2S3 is still lacking. Here, we report the large anisotropic electronic and mechanical properties of As2S3 systems through first-principles calculations and general angle-dependent Hookes law. Monolayer and bilayer As2S3 exhibit anisotropic factors of Youngs modulus of 3.15 and 3.32, respectively, which are larger than the black phosphorous with experimentally confirmed and an anisotropic factor of 2. This study provides an effective route to flexible orientation-dependent nanoelectronics, nanomechanics, and offers implications in promoting related experimental investigations.
Carbon nitride-based nanostructures have attracted special attention (from theory and experiments) due to their remarkable electromechanical properties. In this work we have investigated the mechanical properties of some graphene-like carbon nitride membranes through fully atomistic reactive molecular dynamics simulations. We have analyzed three different structures of these CN families, the so-called graphene-based g-CN, triazine-based g-C3N4 and heptazine-based g-C3N4. The stretching dynamics of these membranes was studied for deformations along their two main axes and at three different temperatures: 10K, 300K and 600K. We show that g-CN membranes have the lowest ultimate fracture strain value, followed by heptazine-based and triazine-based ones, respectively. This behavior can be explained in terms of their differences in terms of density values, topologies and types of chemical bonds. The dependency of the fracture patterns on the stretching directions is also discussed.
Devices made from graphene encapsulated in hexagonal boron-nitride exhibit pronounced negative bend resistance and an anomalous Hall effect, which are a direct consequence of room-temperature ballistic transport on a micrometer scale for a wide range of carrier concentrations. The encapsulation makes graphene practically insusceptible to the ambient atmosphere and, simultaneously, allows the use of boron nitride as an ultrathin top gate dielectric.
The growth process of single layer graphene with and without substrate is investigated using ab initio, finite temperature molecular dynamic calculations within density functional theory. An understanding of the epitaxial graphene growth mechanisms i n the atomic level is provided by exploring the transient stages which occur at the growing edges of graphene. These stages are formation and collapse of large carbon rings together with the formation and healing of Stone-Wales like pentagon-heptagon defects. The activation barriers for the healing of these growth induced defects on various substrates are calculated using the climbing image nudge elastic band method and compared with that of the Stone-Wales defect. It is found that the healing of pentagon-heptagon defects occurring near the edge in the course of growth is much easier than that of Stone-Wales defect. The role of the substrate in the epitaxial growth and in the healing of defects are also investigated in detail, along with the effects of using carbon dimers as the building blocks of graphene growth.
Antiferromagnets (AFMs) with zero net magnetization are proposed as active elements in future spintronic devices. Depending on the critical thickness of the AFM thin films and the measurement temperature, bimetallic Mn-based alloys and transition met al oxide-based AFMs can host various coexisting ordered, disordered, and frustrated AFM phases. Such coexisting phases in the exchange coupled ferromagnetic (FM)/AFM-based heterostructures can result in unusual magnetic and magnetotransport phenomena. Here, we integrate chemically disordered AFM IrMn3 thin films with coexisting AFM phases into complex exchange coupled MgO(001)/Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures and study the structural, magnetic, and magnetotransport properties in various magnetic field cooling states. In particular, we unveil the impact of rotating the relative orientation of the disordered and reversible AFM moments with respect to the irreversible AFM moments on the magnetic and magnetoresistance properties of the exchange coupled heterostructures. We further found that the persistence of AFM grains with thermally disordered and reversible AFM order is crucial for achieving highly tunable magnetic properties and multi-level magnetoresistance states. We anticipate that the introduced approach and the heterostructure architecture can be utilized in future spintronic devices to manipulate the thermally disordered and reversible AFM order at the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا