ترغب بنشر مسار تعليمي؟ اضغط هنا

Mechanical and Structural Properties of Graphene-like Carbon Nitride Sheets

152   0   0.0 ( 0 )
 نشر من قبل Tiago Botari T.B.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Carbon nitride-based nanostructures have attracted special attention (from theory and experiments) due to their remarkable electromechanical properties. In this work we have investigated the mechanical properties of some graphene-like carbon nitride membranes through fully atomistic reactive molecular dynamics simulations. We have analyzed three different structures of these CN families, the so-called graphene-based g-CN, triazine-based g-C3N4 and heptazine-based g-C3N4. The stretching dynamics of these membranes was studied for deformations along their two main axes and at three different temperatures: 10K, 300K and 600K. We show that g-CN membranes have the lowest ultimate fracture strain value, followed by heptazine-based and triazine-based ones, respectively. This behavior can be explained in terms of their differences in terms of density values, topologies and types of chemical bonds. The dependency of the fracture patterns on the stretching directions is also discussed.



قيم البحث

اقرأ أيضاً

Nanoscrolls (papyrus-like nanostructures) are very attractive structures for a variety of applications, due to their tunable diameter values and large accessible surface area. They have been successfully synthesized from different materials. In this work we have investigated, through fully atomistic molecular dynamics simulations, the dynamics of scroll formation for a series of graphenelike carbon nitride (CN) twodimensional systems: gCN, triazinebased gC3N4, and heptazinebased gC3N4. Our results show that stable nanoscrolls can be formed for all of these structures. Possible synthetic routes to produce these nanostructures are also addressed.
Anisotropic materials, with orientation-dependent properties, have attracted more and more attention due to their compelling tunable and flexible performance in electronic and optomechanical devices. So far, two-dimensional (2D) black phosphorus show s the largest known anisotropic behavior, which is highly desired for synaptic and neuromorphic devices, multifunctional directional memories, and even polarization-sensitive photodetector, whereas it is unstable at ambient conditions. Recently, 2D few-layered As2S3 with superior chemical stability was successfully exfoliated in experiments. However, the electronic and mechanical properties of monolayer and bilayer As2S3 is still lacking. Here, we report the large anisotropic electronic and mechanical properties of As2S3 systems through first-principles calculations and general angle-dependent Hookes law. Monolayer and bilayer As2S3 exhibit anisotropic factors of Youngs modulus of 3.15 and 3.32, respectively, which are larger than the black phosphorous with experimentally confirmed and an anisotropic factor of 2. This study provides an effective route to flexible orientation-dependent nanoelectronics, nanomechanics, and offers implications in promoting related experimental investigations.
Recently, a new class of carbon allotrope called protomene was proposed. This new structure is composed of sp2 and sp3 carbon-bonds. Topologically, protomene can be considered as an sp3 carbon structure (~80% of this bond type) doped by sp2 carbons. First-principles simulations have shown that protomene presents an electronic bandgap of ~3.4 eV. However, up to now, its mechanical properties have not been investigated. In this work, we have investigated protomene mechanical behavior under tensile strain through fully atomistic reactive molecular dynamics simulations using the ReaxFF force field, as available in the LAMMPS code. At room temperature, our results show that the protomene is very stable and the obtained ultimate strength and ultimate stress indicates an anisotropic behavior. The highest ultimate strength was obtained for the x-direction, with a value of ~110 GPa. As for the ultimate strain, the highest one was for the z-direction (~25% of strain) before protomene mechanical fracture.
Graphdiyne, atomically-thin 2D carbon nanostructure based on sp-sp2 hybridization, is an appealing system potentially showing outstanding mechanical and optoelectronic properties. Surface-catalyzed coupling of halogenated sp-carbon-based molecular pr ecursors represents a promising bottom-up strategy to fabricate extended 2D carbon systems with engineered structure on metallic substrates. Here, we investigate the atomic-scale structure and electronic and vibrational properties of an extended graphdiyne-like sp-sp2 carbon nanonetwork grown on Au(111) by means of on-surface synthesis. The formation of such 2D nanonetwork at its different stages as a function of the annealing temperature after the deposition is monitored by scanning tunneling microscopy (STM), Raman spectroscopy and combined with density functional theory (DFT) calculations. High-resolution STM imaging and the high sensitivity of Raman spectroscopy to the bond nature provide a unique strategy to unravel the atomic-scale properties of sp-sp2 carbon nanostructures. We show that hybridization between the 2D carbon nanonetwork and the underlying substrate states strongly affects its electronic and vibrational properties, modifying substantially the density of states and the Raman spectrum compared to the free standing system. This opens the way to the modulation of the electronic properties with significant prospects in future applications as active nanomaterials for catalysis, photoconversion and carbon-based nanoelectronics.
137 - G. Cantele , D. Alf`e , F. Conte 2020
The structural and electronic properties of twisted bilayer graphene are investigated from first principles and tight binding approach as a function of the twist angle (ranging from the first magic angle $theta=1.08^circ$ to $theta=3.89^circ$, with t he former corresponding to the largest unit cell, comprising 11164 carbon atoms). By properly taking into account the long-range van der Waals interaction, we provide the patterns for the atomic displacements (with respect to the ideal twisted bilayer). The out-of-plane relaxation shows an oscillating (buckling) behavior, very evident for the smallest angles, with the atoms around the AA stacking regions interested by the largest displacements. The out-of-plane displacements are accompanied by a significant in-plane relaxation, showing a vortex-like pattern, where the vorticity (intended as curl of the displacement field) is reverted when moving from the top to the bottom plane and viceversa. Overall, the atomic relaxation results in the shrinking of the AA stacking regions in favor of the more energetically favorable AB/BA stacking domains. The measured flat bands emerging at the first magic angle can be accurately described only if the atomic relaxations are taken into account. Quite importantly, the experimental gaps separating the flat band manifold from the higher and lower energy bands cannot be reproduced if only in-plane or only out-of-plane relaxations are considered. The stability of the relaxed bilayer at the first magic angle is estimated to be of the order of 0.5-0.9 meV per atom (or 7-10 K). Our calculations shed light on the importance of an accurate description of the vdW interaction and of the resulting atomic relaxation to envisage the electronic structure of this really peculiar kind of vdW bilayers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا