ﻻ يوجد ملخص باللغة العربية
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. We compare two different limits of the measurement problem, the stochastic quantum-state diffusion protocol corresponding to infinite small jumps per unit of time and the no-click limit, corresponding to post-selection and described by a non-Hermitian Hamiltonian. In both cases we find a remarkably similar phenomenology as the measurement strength $gamma$ is increased, namely a sharp transition from a critical phase with logarithmic scaling of the entanglement to an area-law phase, which occurs at the same value of the measurement rate in the two protocols. An effective central charge, extracted from the logarithmic scaling of the entanglement, vanishes continuously at the common transition point, although with different critical behavior possibly suggesting different universality classes for the two protocols. We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement, as suggested by the entanglement statistics which displays emergent bimodality upon approaching the critical point. The non-Hermitian Hamiltonian and its associated subradiance spectral transition provide a natural framework to understand both the extended critical phase, emerging here for a model which lacks any continuous symmetry, and the entanglement transition into the area law.
The resilience of quantum entanglement to a classicality-inducing environment is tied to fundamental aspects of quantum many-body systems. The dynamics of entanglement has recently been studied in the context of measurement-induced entanglement trans
The competition between scrambling unitary evolution and projective measurements leads to a phase transition in the dynamics of quantum entanglement. Here, we demonstrate that the nature of this transition is fundamentally altered by the presence of
We investigate the entanglement of the ferromagnetic XY model in a random magnetic field at zero temperature and in the uniform magnetic field at finite temperatures. We use the concurrence to quantify the entanglement. We find that, in the ferromagn
Entanglement transitions in quantum dynamics present a novel class of phase transitions in non-equilibrium systems. When a many-body quantum system undergoes unitary evolution interspersed with monitored random measurements, the steady-state can exhi
Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equili