ﻻ يوجد ملخص باللغة العربية
The equivalence between the instructions used to define programs and the input data on which the instructions operate is a basic principle of classical computer architectures and programming. Replacing classical data with quantum states enables fundamentally new computational capabilities with scaling advantages for many applications, and numerous models have been proposed for realizing quantum computation. However, within each of these models, the quantum data are transformed by a set of gates that are compiled using solely classical information. Conventional quantum computing models thus break the instruction-data symmetry: classical instructions and quantum data are not directly interchangeable. In this work, we use a density matrix exponentiation protocol to execute quantum instructions on quantum data. In this approach, a fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state. Our demonstration relies on a 99.7% fidelity controlled-phase gate implemented using two tunable superconducting transmon qubits, which enables an algorithmic fidelity surpassing 90% at circuit depths exceeding 70. The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation, thereby enabling exponential speedup for a broad range of algorithms, including quantum principal component analysis, the measurement of entanglement spectra, and universal quantum emulation.
Parallel operations in conventional computing have proven to be an essential tool for efficient and practical computation, and the story is not different for quantum computing. Indeed, there exists a large body of works that study advantages of paral
Modern cryptography is largely based on complexity assumptions, for example, the ubiquitous RSA is based on the supposed complexity of the prime factorization problem. Thus, it is of fundamental importance to understand how a quantum computer would e
The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package genera
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant
Domains are homogeneous areas of discrete symmetry, created in nonequilibrium phase transitions. They are separated by domain walls, topological objects which prevent them from fusing together. Domains may reconfigure by thermally-driven microscopic