ترغب بنشر مسار تعليمي؟ اضغط هنا

Intensity Discriminability of Electrocutaneous and Intraneural Stimulation Pulse Frequency in Intact Individuals and Amputees

66   0   0.0 ( 0 )
 نشر من قبل Jacob George
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Electrical stimulation of residual nerves can be used to provide amputees with intuitive sensory feedback. An important aspect of this artificial sensory feedback is the ability to convey the magnitude of tactile stimuli. Using classical psychophysical methods, we quantified the just-noticeable differences for electrocutaneous stimulation pulse frequency in both intact participants and one transradial amputee. For the transradial amputee, we also quantified the just-noticeable difference of intraneural microstimulation pulse frequency via chronically implanted Utah Slanted Electrode Arrays. We demonstrate that intensity discrimination is similar across conditions: intraneural microstimulation of the residual nerves, electrocutaneous stimulation of the reinnervated skin on the residual limb, and electrocutaneous stimulation of intact hands. We also show that intensity discrimination performance is significantly better at lower pulse frequencies than at higher ones - a finding thats unique to electrocutaneous and intraneural stimulation and suggests that supplemental sensory cues may be present at lower pulse frequencies. These results can help guide the implementation of artificial sensory feedback for sensorized bionic arms.


قيم البحث

اقرأ أيضاً

Objective: This paper aims to demonstrate functional discriminability among restored hand sensations with different locations, qualities, and intensities that are evoked by microelectrode stimulation of residual afferent fibers in human amputees. Met hods: We implanted a Utah Slanted Electrode Array (USEA) in the median and ulnar residual arm nerves of three transradial amputees and delivered stimulation via different electrodes and at different frequencies to produce various locations, qualities, and intensities of sensation on the missing hand. Blind discrimination trials were performed to determine how well subjects could discriminate among these restored sensations. Results: Subjects discriminated among restored sensory percepts with varying cutaneous and proprioceptive locations, qualities, and intensities in blind trials, including discrimination among up to 10 different location-intensity combinations (15/30 successes, p < 0.0005). Variations in the site of stimulation within the nerve, via electrode selection, enabled discrimination among up to 5 locations and qualities (35/35 successes, p < 0.0001). Variations in the stimulation frequency enabled discrimination among 4 different intensities at the same location (13/20 successes, p < 0.005). One subject discriminated among simultaneous, alternating, and isolated stimulation of two different USEA electrodes, as may be desired during multi-sensor closed-loop prosthesis use (20/25 successes, p < 0.001). Conclusion: USEA stimulation enables encoding of a diversity of functionally discriminable sensations with different locations, qualities, and intensities. Significance: These percepts provide a potentially rich source of sensory feedback that may enhance performance and embodiment during multi-sensor, closed-loop prosthesis use.
Neural interfaces using biocompatible scaffolds provide crucial properties for the functional repair of nerve injuries and neurodegenerative diseases, including cell adhesion, structural support, and mass transport. Neural stimulation has also been f ound to be effective in promoting neural regeneration. This work provides a new strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable non-genetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation. 94% of photoacoustic stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74-fold in a dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that photoacoustic neural stimulation promoted neurite outgrowth by impacting the brain-derived neurotrophic factor (BDNF) pathway. As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated non-genetic PA neural stimulation functions and promoted neurite outgrowth, providing a new method for non-pharmacological neural regeneration.
Loneliness (i.e., the distressing feeling that often accompanies the subjective sense of social disconnection) is detrimental to mental and physical health, and deficits in self-reported feelings of being understood by others is a risk factor for lon eliness. What contributes to these deficits in lonely people? We used functional magnetic resonance imaging (fMRI) to unobtrusively measure the relative alignment of various aspects of peoples mental processing of naturalistic stimuli (specifically, videos) as they unfold over time. We thereby tested whether lonely people actually process the world in idiosyncratic ways, rather than only exaggerating or misperceiving how dissimilar others views are to their own (which could lead them to feel misunderstood, even if they actually see the world similarly to those around them). We found evidence for such idiosyncrasy: lonely individuals neural responses during free viewing of the videos were dissimilar to peers in their communities, particularly in brain regions (e.g., regions of the default-mode network) in which similar responses have been associated with shared psychological perspectives and subjective understanding. Our findings were robust even after controlling for demographic similarities, participants overall levels of objective social isolation, and their friendships with each other. These results suggest that being surrounded predominantly by people who see the world differently from oneself may be a risk factor for loneliness, even if one is friends with them.
The dynamic characteristics of functional network connectivity have been widely acknowledged and studied. Both shared and unique information has been shown to be present in the connectomes. However, very little has been known about whether and how th is common pattern can predict the individual variability of the brain, i.e. brain fingerprinting, which attempts to reliably identify a particular individual from a pool of subjects. In this paper, we propose to enhance the individual uniqueness based on an autoencoder network. More specifically, we rely on the hypothesis that the common neural activities shared across individuals may lessen individual discrimination. By reducing contributions from shared activities, inter-subject variability can be enhanced. Results show that that refined connectomes utilizing an autoencoder with sparse dictionary learning can successfully distinguish one individual from the remaining participants with reasonably high accuracy (up to 99:5% for the rest-rest pair). Furthermore, high-level cognitive behavior (e.g., fluid intelligence, executive function, and language comprehension) can also be better predicted using refined functional connectivity profiles. As expected, the high-order association cortices contributed more to both individual discrimination and behavior prediction. The proposed approach provides a promising way to enhance and leverage the individualized characteristics of brain networks.
We study the extent to which vibrotactile stimuli delivered to the head of a subject can serve as a platform for a brain computer interface (BCI) paradigm. Six head positions are used to evoke combined somatosensory and auditory (via the bone conduct ion effect) brain responses, in order to define a multimodal tactile and auditory brain computer interface (taBCI). Experimental results of subjects performing online taBCI, using stimuli with a moderately fast inter-stimulus interval (ISI), validate the taBCI paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا