ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-command Tactile and Auditory Brain Computer Interface based on Head Position Stimulation

170   0   0.0 ( 0 )
 نشر من قبل Tomasz Rutkowski
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the extent to which vibrotactile stimuli delivered to the head of a subject can serve as a platform for a brain computer interface (BCI) paradigm. Six head positions are used to evoke combined somatosensory and auditory (via the bone conduction effect) brain responses, in order to define a multimodal tactile and auditory brain computer interface (taBCI). Experimental results of subjects performing online taBCI, using stimuli with a moderately fast inter-stimulus interval (ISI), validate the taBCI paradigm, while the feasibility of the concept is illuminated through information transfer rate case studies.

قيم البحث

اقرأ أيضاً

Motor imagery-based brain-computer interfaces (BCIs) use an individuals ability to volitionally modulate localized brain activity as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many indiv iduals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Previous research suggests that coherent activity across diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using MEG. Specifically, we employ a minimally constrained matrix decomposition method (non-negative matrix factorization) to simultaneously identify regularized, covarying subgraphs of functional connectivity, to assess their similarity to task performance, and to detect their time-varying expression. Individuals also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in regions important for sustaining attention. To test this model, we use tools that stipulate regional dynamics on a networked system (network control theory), and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of brain regions important for attention.
Model-based studies of auditory nerve responses to electrical stimulation can provide insight into the functioning of cochlear implants. Ideally, these studies can identify limitations in sound processing strategies and lead to improved methods for p roviding sound information to cochlear implant users. To accomplish this, models must accurately describe auditory nerve spiking while avoiding excessive complexity that would preclude large-scale simulations of populations of auditory nerve fibers and obscure insight into the mechanisms that influence neural encoding of sound information. In this spirit, we develop a point process model of the auditory nerve that provides a compact and accurate description of neural responses to electric stimulation. Inspired by the framework of generalized linear models, the proposed model consists of a cascade of linear and nonlinear stages. We show how each of these stages can be associated with biophysical mechanisms and related to models of neuronal dynamics. Moreover, we derive a semi-analytical procedure that uniquely determines each parameter in the model on the basis of fundamental statistics from recordings of single fiber responses to electric stimulation, including threshold, relative spread, jitter, and chronaxie. The model also accounts for refractory and summation effects that influence the responses of auditory nerve fibers to high pulse rate stimulation. Throughout, we compare model predictions to published physiological data and explain differences in auditory nerve responses to high and low pulse rate stimulation. We close by performing an ideal observer analysis of simulated spike trains in response to sinusoidally amplitude modulated stimuli and find that carrier pulse rate does not affect modulation detection thresholds.
414 - Anton Andreev 2019
In this article, we explore the availability of head-mounted display (HMD) devices which can be coupled in a seamless way with P300-based brain-computer interfaces (BCI) using electroencephalography (EEG). The P300 is an event-related potential appea ring about 300ms after the onset of a stimulation. The recognition of this potential on the ongoing EEG requires the knowledge of the exact onset of the stimuli. In other words, the stimulations presented in the HMD must be perfectly synced with the acquisition of the EEG signal. This is done through a process called tagging. The tagging must be performed in a reliable and robust way so as to guarantee the recognition of the P300 and thus the performance of the BCI. An HMD device should also be able to render images fast enough to allow an accurate perception of the stimulations, and equally to not perturb the acquisition of the EEG signal. In addition, an affordable HMD device is needed for both research and entertainment purposes. In this study, we selected and tested two HMD configurations.
Steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI) provides reliable responses leading to high accuracy and information throughput. But achieving high accuracy typically requires a relatively long time window of one second o r more. Various methods were proposed to improve sub-second response accuracy through subject-specific training and calibration. Substantial performance improvements were achieved with tedious calibration and subject-specific training; resulting in the users discomfort. So, we propose a training-free method by combining spatial-filtering and temporal alignment (CSTA) to recognize SSVEP responses in sub-second response time. CSTA exploits linear correlation and non-linear similarity between steady-state responses and stimulus templates with complementary fusion to achieve desirable performance improvements. We evaluated the performance of CSTA in terms of accuracy and Information Transfer Rate (ITR) in comparison with both training-based and training-free methods using two SSVEP data-sets. We observed that CSTA achieves the maximum mean accuracy of 97.43$pm$2.26 % and 85.71$pm$13.41 % with four-class and forty-class SSVEP data-sets respectively in sub-second response time in offline analysis. CSTA yields significantly higher mean performance (p<0.001) than the training-free method on both data-sets. Compared with training-based methods, CSTA shows 29.33$pm$19.65 % higher mean accuracy with statistically significant differences in time window less than 0.5 s. In longer time windows, CSTA exhibits either better or comparable performance though not statistically significantly better than training-based methods. We show that the proposed method brings advantages of subject-independent SSVEP classification without requiring training while enabling high target recognition performance in sub-second response time.
Riemannian geometry has been applied to Brain Computer Interface (BCI) for brain signals classification yielding promising results. Studying electroencephalographic (EEG) signals from their associated covariance matrices allows a mitigation of common sources of variability (electronic, electrical, biological) by constructing a representation which is invariant to these perturbations. While working in Euclidean space with covariance matrices is known to be error-prone, one might take advantage of algorithmic advances in information geometry and matrix manifold to implement methods for Symmetric Positive-Definite (SPD) matrices. This paper proposes a comprehensive review of the actual tools of information geometry and how they could be applied on covariance matrices of EEG. In practice, covariance matrices should be estimated, thus a thorough study of all estimators is conducted on real EEG dataset. As a main contribution, this paper proposes an online implementation of a classifier in the Riemannian space and its subsequent assessment in Steady-State Visually Evoked Potential (SSVEP) experimentations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا