ﻻ يوجد ملخص باللغة العربية
Recent works have shown that generative data augmentation, where synthetic samples generated from deep generative models complement the training dataset, benefit NLP tasks. In this work, we extend this approach to the task of dialog state tracking for goal-oriented dialogs. Due to the inherent hierarchical structure of goal-oriented dialogs over utterances and related annotations, the deep generative model must be capable of capturing the coherence among different hierarchies and types of dialog features. We propose the Variational Hierarchical Dialog Autoencoder (VHDA) for modeling the complete aspects of goal-oriented dialogs, including linguistic features and underlying structured annotations, namely speaker information, dialog acts, and goals. The proposed architecture is designed to model each aspect of goal-oriented dialogs using inter-connected latent variables and learns to generate coherent goal-oriented dialogs from the latent spaces. To overcome training issues that arise from training complex variational models, we propose appropriate training strategies. Experiments on various dialog datasets show that our model improves the downstream dialog trackers robustness via generative data augmentation. We also discover additional benefits of our unified approach to modeling goal-oriented dialogs: dialog response generation and user simulation, where our model outperforms previous strong baselines.
Neural dialog state trackers are generally limited due to the lack of quantity and diversity of annotated training data. In this paper, we address this difficulty by proposing a reinforcement learning (RL) based framework for data augmentation that c
Dialog state tracking (DST) suffers from severe data sparsity. While many natural language processing (NLP) tasks benefit from transfer learning and multi-task learning, in dialog these methods are limited by the amount of available data and by the s
Dialog acts reveal the intention behind the uttered words. Thus, their automatic recognition is important for a dialog system trying to understand its conversational partner. The study presented in this article approaches that task on the DIHANA corp
Recently, two approaches, fine-tuning large pre-trained language models and variational training, have attracted significant interests, separately, for semi-supervised end-to-end task-oriented dialog (TOD) systems. In this paper, we propose Variation
In this work, we present a framework for incorporating descriptive logical rules in state-of-the-art neural networks, enabling them to learn how to handle unseen labels without the introduction of any new training data. The rules are integrated into