ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic-field-induced robust zero Hall plateau state in MnBi$_2$Te$_4$ Chern insulator

84   0   0.0 ( 0 )
 نشر من قبل Yayu Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic antiferromagnetic topological insulator MnBi2Te4 provides an ideal platform for exploring exotic topological quantum phenomena. Recently, the Chern insulator and axion insulator phases have been realized in few-layer MnBi2Te4 devices at low magnetic field regime. However, the fate of MnBi2Te4 in high magnetic field has never been explored in experiment. In this work, we report transport studies of exfoliated MnBi2Te4 flakes in pulsed magnetic fields up to 61.5 T. In the high-field limit, the Chern insulator phase with Chern number C = -1 evolves into a robust zero Hall resistance plateau state. Nonlocal transport measurements and theoretical calculations demonstrate that the charge transport in the zero Hall plateau state is conducted by two counter-propagating edge states that arise from the combined effects of Landau levels and large Zeeman effect in strong magnetic fields. Our result demonstrates the intricate interplay among intrinsic magnetic order, external magnetic field, and nontrivial band topology in MnBi2Te4.


قيم البحث

اقرأ أيضاً

The unoccupied part of the band structure in the magnetic topological insulator MnBi$_2$Te$_4$ is studied by first-principles calculations. We find a second, unoccupied topological surface state with similar electronic structure to the celebrated occ upied topological surface state. This state is energetically located approximate $1.6$ eV above the occupied Dirac surface state around $Gamma$ point, which permit it to be directly observed by the two-photon angle-resolved photoemission spectroscopy. We propose a unified effective model for the occupied and unoccupied surface states. Due to the direct optical coupling between these two surface states, we further propose two optical effects to detect the unoccupied surface state. One is the polar Kerr effect in odd layer from nonvanishing ac Hall conductance $sigma_{xy}(omega)$, and the other is higher-order terahertz-sideband generation in even layer, where the non-vanishining Berry curvature of the unoccupied surface state is directly observed from the giant Faraday rotation of optical emission.
Topological states of quantum matter have attracted great attention in condensed matter physics and materials science. The study of time-reversal-invariant (TRI) topological states in quantum materials has made tremendous progress in both theories an d experiments. As a great success, thousands of TRI topological materials are predicted through sweeping search. Richer exotic phenomena are expected to appear in magnetic topological materials because of varied magnetic configurations, but this study falls much behind due to the complex magnetic structures and transitions. Here, we predict the tetradymite-type compound MnBi$_2$Te$_4$ and its related materials host interesting magnetic topological states. The magnetic ground state of MnBi$_2$Te$_4$ is an antiferromagnetic phase which leads to an antiferromagetic topological insulator state with a large topologically non-trivial energy gap ($sim$0.2~eV). It is the parent state for the axion state, which has gapped bulk and surface states, and quantized topological magnetoelectric effect. The ferromagnetic phase of MnBi$_2$Te$_4$ leads to an ideal minimal type-II Weyl semimetal with two Weyl points accompanied by one hole-type and one electron-type Fermi pocket at the Fermi level, which has never been discovered elsewhere. We further present a simple and unified continuum model to capture the salient topological features of this kind of materials.
The recent discovery of antiferromagnetic (AFM) topological insulator (TI) MnBi$_2$Te$_4$ has triggered great research efforts on exploring novel magnetic topological physics. Based on first-principles calculations, we find that the manipulation of m agnetic orientation and order not only significantly affects material symmetries and orbital hybridizations, but also results in variant new magnetic topological phases in MnBi$_2$Te$_4$. We thus predict a series of unusual topological quantum phase transitions that are magnetically controllable in the material, including phase transitions from AFM TI to AFM mirror topological crystalline insulator, from type-II to type-I topological Weyl semimetal, and from axion insulator to Chern insulator. The findings open new opportunities for future research and applications of magnetic topological materials.
293 - Y. S. Hou , R. Q. Wu 2020
The intrinsic antiferromagnetic (AFM) interlayer coupling in two-dimensional magnetic topological insulator MnBi$_2$Te$_4$ places a restriction on realizing stable quantum anomalous Hall effect (QAHE) [Y. Deng et al., Science 367, 895 (2020)]. Throug h density functional theory calculations, we demonstrate the possibility of tuning the AFM coupling to the ferromagnetic coupling in MnBi$_2$Te$_4$ films by alloying about 50% V with Mn. As a result, QAHE can be achieved without alternation with the even or odd septuple layers. This provides a practical strategy to get robust QAHE in ultrathin MnBi$_2$Te$_4$ films, rendering them attractive for technological innovations.
More than forty years ago, axion was postulated as an elementary particle with a low mass and weak interaction in particle physics to solve the strong $mathcal{CP}$ (charge conjugation and parity) puzzle. Axions are also considered as a possible comp onent of dark matter of the universe. However, the existence of axions in nature has not been confirmed. Interestingly, axions arise as pseudoscalar fields derived from the Chern-Simons theory in condensed matter physics. In antiferromagnetic insulators, the axion field can become dynamical induced by spin-wave excitations and exhibits rich exotic phenomena, such as, the chiral magnetic effect, axionic polariton and so on. However, the study of the dynamical axion field is rare due to the lack of real materials. Recently, MnBi$_2$Te$_4$ was discovered to be an antiferromagnetic topological insulator with a quantized axion field protected by the inversion symmetry $mathcal{P}$ and the magnetic-crystalline symmetry $mathcal{S}$. Here, we studied MnBi$_2$Te$_4$ films in which both the $mathcal{P}$ and $mathcal{S}$ symmetries are spontaneously broken and found that the dynamical axion field and largely tunable dynamical magnetoelectric effects can be realized through tuning the thickness of MnBi$_2$Te$_4$ films, the temperature and the element substitution. Our results open a broad avenue to study axion dynamics in antiferromagnetic topological insulator MnBi$_2$Te$_4$ and related materials, and also is hopeful to promote the research of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا