ﻻ يوجد ملخص باللغة العربية
More than forty years ago, axion was postulated as an elementary particle with a low mass and weak interaction in particle physics to solve the strong $mathcal{CP}$ (charge conjugation and parity) puzzle. Axions are also considered as a possible component of dark matter of the universe. However, the existence of axions in nature has not been confirmed. Interestingly, axions arise as pseudoscalar fields derived from the Chern-Simons theory in condensed matter physics. In antiferromagnetic insulators, the axion field can become dynamical induced by spin-wave excitations and exhibits rich exotic phenomena, such as, the chiral magnetic effect, axionic polariton and so on. However, the study of the dynamical axion field is rare due to the lack of real materials. Recently, MnBi$_2$Te$_4$ was discovered to be an antiferromagnetic topological insulator with a quantized axion field protected by the inversion symmetry $mathcal{P}$ and the magnetic-crystalline symmetry $mathcal{S}$. Here, we studied MnBi$_2$Te$_4$ films in which both the $mathcal{P}$ and $mathcal{S}$ symmetries are spontaneously broken and found that the dynamical axion field and largely tunable dynamical magnetoelectric effects can be realized through tuning the thickness of MnBi$_2$Te$_4$ films, the temperature and the element substitution. Our results open a broad avenue to study axion dynamics in antiferromagnetic topological insulator MnBi$_2$Te$_4$ and related materials, and also is hopeful to promote the research of dark matter.
Topological states of quantum matter have attracted great attention in condensed matter physics and materials science. The study of time-reversal-invariant (TRI) topological states in quantum materials has made tremendous progress in both theories an
The recent discovery of antiferromagnetic (AFM) topological insulator (TI) MnBi$_2$Te$_4$ has triggered great research efforts on exploring novel magnetic topological physics. Based on first-principles calculations, we find that the manipulation of m
Using scanning tunneling microscopy and spectroscopy, we visualized the native defects in antiferromagnetic topological insulator $mathrm{MnBi_2Te_4}$. Two native defects $mathrm{Mn_{Bi}}$ and $mathrm{Bi_{Te}}$ antisites can be well resolved in the t
Recently, the intrinsic magnetic topological insulator MnBi$_2$Te$_4$ has attracted great attention. It has an out-of-plane antiferromagnetic order, which is believed to open a sizable energy gap in the surface states. This gap, however, was not alwa
Despite the rapid progress in understanding the first intrinsic magnetic topological insulator MnBi$_2$Te$_4$, its electronic structure remains a topic under debates. Here we perform a thorough spectroscopic investigation into the electronic structur