ﻻ يوجد ملخص باللغة العربية
We present a stochastic simulation method designed to study at an atomic resolution the growth kinetics of compounds characterized by the sp3-type bonding symmetry. Formalization and implementation details are discussed for the particular case of the 3C-SiC material. A key feature of our numerical tool is the ability to simulate the evolution of both point-like and extended defects, whereas atom kinetics depend critically on process-related parameters. In particular, the simulations can describe the surface state of the crystal and the generation/evolution of defects as a function of the initial substrate condition and the calibration of the simulation parameters. We demonstrate that quantitative predictions of the microstructural evolution of the studied systems can be readily compared with the structural characterization of actual processed samples.
We demonstrate how first-principles calculations using density-functional theory (DFT) can be applied to gain insight into the molecular processes that rule the physics of materials processing. Specifically, we study the molecular beam epitaxy (MBE)
Puckered honeycomb Sb monolayer, the structural analog of black phosphorene, has been recently successfully grown by means of molecular beam epitaxy. However, little is known to date about the growth mechanism for such puckered honeycomb monolayer. I
In this work we report on kinetic Monte-Carlo calculations of resistive switching and the underlying growth dynamics of filaments in an electrochemical metallization device consisting of an Ag/TiO2/Pt sandwich-like thin film system. The developed mod
Twelve two-dimensional group-IV monochalcogenide monolayers (SiS, SiSe, SiTe, GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe, and PbTe) with a buckled honeycomb atomistic structure--belonging to symmetry group P3m1--and an out-of-plane intrinsic electri
Understanding the microscopic mechanism of chemical vapor deposition (CVD) growth of two-dimensional molybdenum disulfide (2D MoS2) is a fundamental issue towards the function-oriented controlled growth. In this work, we report results on revealing t