ﻻ يوجد ملخص باللغة العربية
In this work we report on kinetic Monte-Carlo calculations of resistive switching and the underlying growth dynamics of filaments in an electrochemical metallization device consisting of an Ag/TiO2/Pt sandwich-like thin film system. The developed model is not limited to i) fast time scale dynamics and ii) only one growth and dissolution cycle of metallic filaments. In particular, we present results from the simulation of consecutive cycles. We find that the numerical results are in excellent agreement with experimentally obtained data. Additionally, we observe an unexpected filament growth mode which is in contradiction to the widely acknowledged picture of filament growth, but consistent with recent experimental findings.
We report on resistive switching of memristive electrochemical metallization devices using 3D kinetic Monte Carlo simulations describing the transport of ions through a solid state electrolyte of an Ag/TiO$_{text{x}}$/Pt thin layer system. The ion tr
Electrochemical ion insertion involves coupled ion-electron transfer reactions, transport of guest species, and redox of the host. The hosts are typically anisotropic solids with two-dimensional conduction planes, but can also be materials with one-d
In this work we report on the role of ion transport for the dynamic behavior of a double barrier quantum mechanical Al/Al$_2$O$_3$/Nb$_{text{x}}$O$_{text{y}}$/Au memristive device based on numerical simulations in conjunction with experimental measur
We present a stochastic simulation method designed to study at an atomic resolution the growth kinetics of compounds characterized by the sp3-type bonding symmetry. Formalization and implementation details are discussed for the particular case of the
We introduce an approach based on the Chapman-Kolmogorov equation to model heterogeneous stochastic circuits, namely, the circuits combining binary or multi-state stochastic memristive devices and continuum reactive components (capacitors and/or indu