ﻻ يوجد ملخص باللغة العربية
Perovskite solar cells (PSCs) with transparent electrodes can be integrated with existing solar panels in tandem configurations to increase the power conversion efficiency. A critical layer in semi-transparent PSCs is the inorganic buffer layer, which protects the PSC against damage when the transparent electrode is sputtered on top. The development of n-i-p structured semi-transparent PSCs has been hampered by the lack of suitable p-type buffer layers. In this work we develop a p-type CuOx buffer layer, which can be grown uniformly over the perovskite device without damaging the perovskite or organic charge transport layers, can be grown using industrially scalable techniques and has high hole mobility (4.3 +/- 2 cm2 V-1 s-1), high transmittance (>95%), and a suitable ionisation potential for hole extraction (5.3 +/- 0.2 eV). Semi-transparent PSCs with efficiencies up to 16.7% are achieved using the CuOx buffer layer. Our work demonstrates a new approach to integrate PSCs into tandem configurations, as well as enable the development of other devices that need high quality p-type layers.
Transparent oxides are essential building blocks to many technologies, ranging from components in transparent electronics, transparent conductors, to absorbers and protection layers in photovoltaics and photoelectrochemical devices. However, thus far
This work studies the effect of four different types of buffer layers on the structural and optical properties of InGaN layers grown on Si(111) substrates and their correlation with electrical characteristics. The vertical electrical conduction of n-
Transparent oxide semiconductors (TOSs) showing both high visible transparency and high electron mobility have attracted great attention towards the realization of advanced optoelectronic devices. La-doped BaSnO3 (LBSO) is one of the most promising T
Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics compo
CuI has been recently rediscovered as a p-type transparent conductor with a high figure of merit. Even though many metal iodides are hygroscopic, the effect of moisture on the electrical properties of CuI has not been clarified. In this work, we obse