ﻻ يوجد ملخص باللغة العربية
Transparent conducting oxides (TCOs) and transparent oxide semiconductors (TOSs) have become necessary materials for a variety of applications in the information and energy technologies, ranging from transparent electrodes to active electronics components. Perovskite barium stannate (BaSnO3), a new TCO or TOS system, is a potential platform for realizing optoelectronic devices and observing novel electronic quantum states due to its high electron mobility, excellent thermal stability, high transparency, structural versatility, and flexible doping controllability at room temperature. This article reviews recent progress in the doped BaSnO3 system, discussing the wide physical properties, electron-scattering mechanism, and demonstration of key semiconducting devices such as pn diodes and field-effect transistors. Moreover, we discuss the pathways to achieving two-dimensional electron gases at the interface between BaSnO3 and other perovskite oxides and describe remaining challenges for observing novel quantum phenomena at the heterointerface.
The high room temperature mobility and the electron effective mass in BaSnO$_3$ are investigated in depth by evaluation of the free carrier absorption observed in infrared spectra for epitaxial films with free electron concentrations from $8.3 times
Contrary to the common belief that electron-electron interaction (EEI) should be negligible in s-orbital-based conductors, we demonstrated that the EEI effect could play a significant role on electronic transport leading to the misinterpretation of t
Transition metal perovskite chalcogenides, a class of materials with rich tunability in functionalities, are gaining increased attention as candidate materials for renewable energy applications. Perovskite oxides are considered excellent n-type therm
We discovered that perovskite (Ba,La)SnO3 can have excellent carrier mobility even though its band gap is large. The Hall mobility of Ba0.98La0.02SnO3 crystals with the n-type carrier concentration of sim 8-10times10 19 cm-3 is found to be sim 103 cm
Transparent conductors-nearly an oxymoron-are in pressing demand, as ultra-thin-film technologies become ubiquitous commodities. As current solutions rely on non-abundant elements, perovskites such as SrVO3 and SrNbO3 have been suggested as next gene