ﻻ يوجد ملخص باللغة العربية
In this paper, we extend the results from Jiao et al. (2019) on distributed linear quadratic control for leaderless multi-agent systems to the case of distributed linear quadratic tracking control for leader-follower multi-agent systems. Given one autonomous leader and a number of homogeneous followers, we introduce an associated global quadratic cost functional. We assume that the leader shares its state information with at least one of the followers and the communication between the followers is represented by a connected simple undirected graph. Our objective is to design distributed control laws such that the controlled network reaches tracking consensus and, moreover, the associated cost is smaller than a given tolerance for all initial states bounded in norm by a given radius. We establish a centralized design method for computing such suboptimal control laws, involving the solution of a single Riccati inequality of dimension equal to the dimension of the local agent dynamics, and the smallest and the largest eigenvalue of a given positive definite matrix involving the underlying graph. The proposed design method is illustrated by a simulation example.
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide
This paper deals with data-driven output synchronization for heterogeneous leader-follower linear multi-agent systems. Given a multi-agent system that consists of one autonomous leader and a number of heterogeneous followers with external disturbance
Leader-follower tracking control design has received significant attention in recent years due to its important and wide applications. Considering a multi-agent system composed of a leader and multiple followers, this paper proposes and investigates
This paper deals with the distributed $mathcal{H}_2$ optimal control problem for linear multi-agent systems. In particular, we consider a suboptimal version of the distributed $mathcal{H}_2$ optimal control problem. Given a linear multi-agent system
This paper deals with suboptimal distributed H2 control by dynamic output feedback for homogeneous linear multi-agent systems. Given a linear multi-agent system, together with an associated H2 cost functional, the objective is to design dynamic outpu