ﻻ يوجد ملخص باللغة العربية
We present a robotic system for picking a target from a pile of objects that is capable of finding and grasping the target object by removing obstacles in the appropriate order. The fundamental idea is to segment instances with both visible and occluded masks, which we call `instance occlusion segmentation. To achieve this, we extend an existing instance segmentation model with a novel `relook architecture, in which the model explicitly learns the inter-instance relationship. Also, by using image synthesis, we make the system capable of handling new objects without human annotations. The experimental results show the effectiveness of the relook architecture when compared with a conventional model and of the image synthesis when compared to a human-annotated dataset. We also demonstrate the capability of our system to achieve picking a target in a cluttered environment with a real robot.
In order to manipulate a deformable object, such as rope or cloth, in unstructured environments, robots need a way to estimate its current shape. However, tracking the shape of a deformable object can be challenging because of the objects high flexib
We present joint learning of instance and semantic segmentation for visible and occluded region masks. Sharing the feature extractor with instance occlusion segmentation, we introduce semantic occlusion segmentation into the instance segmentation mod
Picking objects in a narrow space such as shelf bins is an important task for humanoid to extract target object from environment. In those situations, however, there are many occlusions between the camera and objects, and this makes it difficult to s
This paper presents an AI system applied to location and robotic grasping. Experimental setup is based on a parameter study to train a deep-learning network based on Mask-RCNN to perform waste location in indoor and outdoor environment, using five di
We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method w