ﻻ يوجد ملخص باللغة العربية
We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method works well for partly occluded objects. Our main contribution is to present the first deep learning-based system that estimates accurate poses for partly occluded objects from RGB-D and RGB input. We achieve this with a new instance-aware pipeline that decomposes 6D object pose estimation into a sequence of simpler steps, where each step removes specific aspects of the problem. The first step localizes all known objects in the image using an instance segmentation network, and hence eliminates surrounding clutter and occluders. The second step densely maps pixels to 3D object surface positions, so called object coordinates, using an encoder-decoder network, and hence eliminates object appearance. The third, and final, step predicts the 6D pose using geometric optimization. We demonstrate that we significantly outperform the state-of-the-art for pose estimation of partly occluded objects for both RGB and RGB-D input.
We propose a novel method that tracks fast moving objects, mainly non-uniform spherical, in full 6 degrees of freedom, estimating simultaneously their 3D motion trajectory, 3D pose and object appearance changes with a time step that is a fraction of
Tracking the 6D pose of objects in video sequences is important for robot manipulation. Most prior efforts, however, often assume that the target objects CAD model, at least at a category-level, is available for offline training or during online temp
Multi-person pose estimation is an attractive and challenging task. Existing methods are mostly based on two-stage frameworks, which include top-down and bottom-up methods. Two-stage methods either suffer from high computational redundancy for additi
We present a new method for estimating the 6D pose of rigid objects with available 3D models from a single RGB input image. The method is applicable to a broad range of objects, including challenging ones with global or partial symmetries. An object
We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or refle