ترغب بنشر مسار تعليمي؟ اضغط هنا

Dyadic decomposition of convex domains of finite type and applications

58   0   0.0 ( 0 )
 نشر من قبل Bingyang Hu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce a dyadic structure on convex domains of finite type via the so-called dyadic flow tents. This dyadic structure allows us to establish weighted norm estimates for the Bergman projection $P$ on such domains with respect to Muckenhoupt weights. In particular, this result gives an alternative proof of the $L^p$ boundedness of $P$. Moreover, using extrapolation, we are also able to derive weighted vector-valued estimates and weighted modular inequalities for the Bergman projection.



قيم البحث

اقرأ أيضاً

We obtain some necessary and sufficient conditions for the boundedness of a family of positive operators defined on symmetric cones, we then deduce off-diagonal boundedness of associated Bergman-type operators in tube domains over symmetric cones.
We prove that the $mathcal{H}^p$-corona problem has a solution for convex domains of finite type in $mathbb{C}^n$, $n ge 2$.
In this note, we frst consider boundedness properties of a family of operators generalizing the Hilbert operator in the upper triangle case. In the diagonal case, we give the exact norm of these operators under some restrictions on the parameters. We secondly consider boundedness properties of a family of positive Bergman-type operators of the upper-half plane. We give necessary and sufficient conditions on the parameters under which these operators are bounded in the upper triangle case.
We prove Carleson embeddings for Bergman spaces of tube domains over symmetric cones, we apply them to characterize symbols of bounded Ces`aro-type operators from weighted Bergman spaces to weighted Besov spaces. We also obtain Schatten class criteri a of Toeplitz operators and Ces`aro-type operators on weighted Hilbert-Bergman spaces.
In this note, we obtain a full characterization of radial Carleson measures for the Hilbert-Hardy space on tube domains over symmetric cones. For large derivatives, we also obtain a full characterization of the measures for which the corresponding em bedding operator is continuous. Restricting to the case of light cones of dimension three, we prove that by freezing one or two variables, the problem of embedding derivatives of the Hilbert-Hardy space into Lebesgue spaces reduces to the characterization of Carleson measures for Hilbert-Bergman spaces of the upper-half plane or the product of two upper-half planes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا