ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundeness of a family of Hilbert-type operators and of its Bergman-type analogue

107   0   0.0 ( 0 )
 نشر من قبل Benoit Florent Sehba
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we frst consider boundedness properties of a family of operators generalizing the Hilbert operator in the upper triangle case. In the diagonal case, we give the exact norm of these operators under some restrictions on the parameters. We secondly consider boundedness properties of a family of positive Bergman-type operators of the upper-half plane. We give necessary and sufficient conditions on the parameters under which these operators are bounded in the upper triangle case.



قيم البحث

اقرأ أيضاً

In this paper, we study the behavior of the singular values of Hankel operators on weighted Bergman spaces $A^2_{omega _varphi}$, where $omega _varphi= e^{-varphi}$ and $varphi$ is a subharmonic function. We consider compact Hankel operators $H_{over line {phi}}$, with anti-analytic symbols ${overline {phi}}$, and give estimates of the trace of $h(|H_{overline phi}|)$ for any convex function $h$. This allows us to give asymptotic estimates of the singular values $(s_n(H_{overline {phi}}))_n$ in terms of decreasing rearrangement of $|phi |/sqrt{Delta varphi}$. For the radial weights, we first prove that the critical decay of $(s_n(H_{overline {phi}}))_n$ is achieved by $(s_n (H_{overline{z}}))_n$. Namely, we establish that if $s_n(H_{overline {phi}})= o (s_n(H_{overline {z}}))$, then $H_{overline {phi}} = 0$. Then, we show that if $Delta varphi (z) asymp frac{1}{(1-|z|^2)^{2+beta}}$ with $beta geq 0$, then $s_n(H_{overline {phi}}) = O(s_n(H_{overline {z}}))$ if and only if $phi $ belongs to the Hardy space $H^p$, where $p= frac{2(1+beta)}{2+beta}$. Finally, we compute the asymptotics of $s_n(H_{overline {phi}})$ whenever $ phi in H^{p }$.
We obtain some necessary and sufficient conditions for the boundedness of a family of positive operators defined on symmetric cones, we then deduce off-diagonal boundedness of associated Bergman-type operators in tube domains over symmetric cones.
For $mathbb B^n$ the unit ball of $mathbb C^n$, we consider Bergman-Orlicz spaces of holomorphic functions in $L^Phi_alpha$, which are generalizations of classical Bergman spaces. We characterize the dual space of large Bergman-Orlicz space, and boun ded Hankel operators between some Bergman-Orlicz spaces $A_alpha^{Phi_1}(mathbb B^n)$ and $A_alpha^{Phi_2}(mathbb B^n)$ where $Phi_1$ and $Phi_2$ are either convex or concave growth functions.
86 - Yongjiang Duan , Siyu Wang , 2021
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o perators [ J_{g}(f)(z)=int_{0}^{z}f(lambda)g(lambda)dlambda ] between weighted Bergman spaces $L_{a}^{p}(omega )$ induced by $mathcal{D}$ weights and Hardy spaces $H^{q}$ for $0<p,q<infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا