ترغب بنشر مسار تعليمي؟ اضغط هنا

Hunting for open clusters in textit{Gaia} DR2: $582$ new OCs in the Galactic disc

89   0   0.0 ( 0 )
 نشر من قبل Alfred Castro-Ginard
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Castro-Ginard




اسأل ChatGPT حول البحث

Open clusters are key targets for both Galaxy structure and evolution and stellar physics studies. Since textit{Gaia} DR2 publication, the discovery of undetected clusters has proven that our samples were not complete. Our aim is to exploit the Big Data capabilities of machine learning to detect new open clusters in textit{Gaia} DR2, and to complete the open cluster sample to enable further studies on the Galactic disc. We use a machine learning based methodology to systematically search in the Galactic disc, looking for overdensities in the astrometric space and identifying them as open clusters using photometric information. First, we use an unsupervised clustering algorithm, DBSCAN, to blindly search for these overdensities in textit{Gaia} DR2 $(l,b,varpi,mu_{alpha^*},mu_delta)$. After that, we use a deep learning artificial neural network trained on colour-magnitude diagrams to identify isochrone patterns in these overdensities, and to confirm them as open clusters. We find $582$ new open clusters distributed along the Galactic disc, in the region $|b| < 20$. We can detect substructure in complex regions, and identify the tidal tails of a disrupting cluster UBC~$274$ of $sim 3$ Gyr located at $sim 2$ kpc. Adapting the methodology into a Big Data environment allows us to target the search driven by physical properties of the open clusters, instead of being driven by its computational requirements. This blind search for open clusters in the Galactic disc increases in a $45%$ the number of known open clusters.



قيم البحث

اقرأ أيضاً

The publication of the Gaia Data Release 2 (Gaia DR2) opens a new era in Astronomy. It includes precise astrometric data (positions, proper motions and parallaxes) for more than $1.3$ billion sources, mostly stars. To analyse such a vast amount of ne w data, the use of data mining techniques and machine learning algorithms are mandatory. The search for Open Clusters, groups of stars that were born and move together, located in the disk, is a great example for the application of these techniques. Our aim is to develop a method to automatically explore the data space, requiring minimal manual intervention. We explore the performance of a density based clustering algorithm, DBSCAN, to find clusters in the data together with a supervised learning method such as an Artificial Neural Network (ANN) to automatically distinguish between real Open Clusters and statistical clusters. The development and implementation of this method to a $5$-Dimensional space ($l$, $b$, $varpi$, $mu_{alpha^*}$, $mu_delta$) to the Tycho-Gaia Astrometric Solution (TGAS) data, and a posterior validation using Gaia DR2 data, lead to the proposal of a set of new nearby Open Clusters. We have developed a method to find OCs in astrometric data, designed to be applied to the full Gaia DR2 archive.
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by givin g us the ability to trace Galactic spiral structure, star formation rates and metallicity gradients. We investigated the available Gaia DR2 catalogue of 1229 open clusters and studied cluster distances, sizes and membership distributions in the 3D space. An appropriate analysis of the parallaxto-distance transformation problem is presented in the context of getting distances toward open clusters and estimating their sizes. Based on our investigation of the Gaia DR2 data we argue that, within 2 kpc, the inverse-parallax method gives comparable results (distances and sizes) as the Bayesian approach based on the exponentially decreasing volume density prior. Both of these methods show very similar dependence of the line-of-sight elongation of clusters (needle-like shapes resulting from the parallax uncertainties) on the distance. We also looked at a measure of elongations of the studied clusters and find the maximum distance of 665 pc at which a spherical fit still contains about half of the stellar population of a cluster. It follows from these results that the 3D structure of an open cluster cannot be properly studied beyond about 500 pc when using any of mentioned standard transformations of parallaxes to distances.
The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types o f objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. We aim at tracing the radial distributions of abundances of elements produced through different nucleosynthetic channels -the alpha-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by using the Gaia-ESO idr4 results of open clusters and young field stars. From the UVES spectra of member stars, we determine the average composition of clusters with ages >0.1 Gyr. We derive statistical ages and distances of field stars. We trace the abundance gradients using the cluster and field populations and we compare them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc<RGC <7 kpc), with their differences, that were usually poorly explained by chemical evolution models. Often, oxygen and magnesium are considered as equivalent in tracing alpha-element abundances and in deducing, e.g., the formation time-scales of different Galactic stellar populations. In addition, often [alpha/Fe] is computed combining several alpha-elements. Our results indicate, as expected, a complex and diverse nucleosynthesis of the various alpha-elements, in particular in the high metallicity regimes, pointing towards a different origin of these elements and highlighting the risk of considering them as a single class with common features.
We report the serendipitous discovery of three new open clusters, named UFMG 1, UFMG 2 and UFMG 3 in the field of the intermediate-age cluster NGC 5999, by using Gaia DR2 data. A colour-magnitude filter tailored for a proper selection of main-sequenc e stars and red clump giants turned evident the presence of NGC 5999 and these three new stellar groups in proper motion space. Their structural parameters were derived from King-profile fittings over their projected stellar distributions and isochrone fits were performed on the clusters cleaned colour-magnitude diagrams built with Gaia bands to derive their astrophysical parameters. The clusters projected sky motion were calculated for each target using our members selection. Distances to the clusters were inferred from stellar parallaxes through a bayesian model, showing that they are marginally consistent with their isochronal distances, considering the random and systematic uncertainties involved. The new clusters are located in the nearby Sagittarius arm (d ~ 1.5 kpc) with NGC 5999 at the background (d ~ 1.8 kpc). They contain at least a few hundred stars of nearly solar metallicity and have ages between 100 and 1400 Myr.
We use Gaia DR2 data to survey the classic Monoceros OB1 region and look for the existence of a dispersed young population, co-moving with the cloud complex. An analysis of the distribution of proper motions reveals a 20-30 Myr association of young s tars, about 300-400 pc away from the far side of the Mon OB1 complex, along the same general line-of-sight. We characterize the new association, Monoceros OB4, and estimate it contains between 1400 and 2500 stars, assuming a standard IMF, putting it on par in size with NGC,2264. We find from the internal proper motions that Mon OB4 is unbound and expanding. Our results seem to unveil a larger and more complex Monoceros star formation region, suggesting an elongated arrangement that seems to be at least 300 x 60 pc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا