ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young field stars

107   0   0.0 ( 0 )
 نشر من قبل Laura Magrini
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spatial distribution of elemental abundances in the disc of our Galaxy gives insights both on its assembly process and subsequent evolution, and on the stellar nucleogenesis of the different elements. Gradients can be traced using several types of objects as, for instance, (young and old) stars, open clusters, HII regions, planetary nebulae. We aim at tracing the radial distributions of abundances of elements produced through different nucleosynthetic channels -the alpha-elements O, Mg, Si, Ca and Ti, and the iron-peak elements Fe, Cr, Ni and Sc - by using the Gaia-ESO idr4 results of open clusters and young field stars. From the UVES spectra of member stars, we determine the average composition of clusters with ages >0.1 Gyr. We derive statistical ages and distances of field stars. We trace the abundance gradients using the cluster and field populations and we compare them with a chemo-dynamical Galactic evolutionary model. Results. The adopted chemo-dynamical model, with the new generation of metallicity-dependent stellar yields for massive stars, is able to reproduce the observed spatial distributions of abundance ratios, in particular the abundance ratios of [O/Fe] and [Mg/Fe] in the inner disc (5 kpc<RGC <7 kpc), with their differences, that were usually poorly explained by chemical evolution models. Often, oxygen and magnesium are considered as equivalent in tracing alpha-element abundances and in deducing, e.g., the formation time-scales of different Galactic stellar populations. In addition, often [alpha/Fe] is computed combining several alpha-elements. Our results indicate, as expected, a complex and diverse nucleosynthesis of the various alpha-elements, in particular in the high metallicity regimes, pointing towards a different origin of these elements and highlighting the risk of considering them as a single class with common features.

قيم البحث

اقرأ أيضاً

Context. The inner disc, linking the thin disc with the bulge, has been somehow neglected in the past because of intrinsic difficulties in its study, due, e.g., to crowding and high extinction. Open clusters located in the inner disc are among the be st tracers of its chemistry at different ages and distances. Aims. We analyse the chemical patterns of four open clusters located within 7 kpc of the Galactic Centre and of field stars to infer the properties of the inner disc with the Gaia-ESO survey idr2/3 data release. Methods. We derive the parameters of the newly observed cluster, Berkeley 81, finding an age of about 1 Gyr and a Galactocentric distance of 5.4 kpc. We construct the chemical patterns of clusters and we compare them with those of field stars in the Solar neighbourhood and in the inner-disc samples. Results. Comparing the three populations we observe that inner-disc clusters and field stars are both, on average, enhanced in [O/Fe], [Mg/Fe] and [Si/Fe]. Using the idr2/3 results of M67, we estimate the non-local thermodynamic equilibrium (NLTE) effect on the abundances of Mg and Si in giant stars. After empirically correcting for NLTE effects, we note that NGC 6705 and Be 81 still have a high [{alpha}/Fe]. Conclusions. The location of the four open clusters and of the field population reveals that the evolution of the metallicity [Fe/H] and of [alpha/Fe] can be explained within the framework of a simple chemical evolution model: both [Fe/H] and [{alpha}/Fe] of Trumpler 20 and of NGC 4815 are in agreement with expectations from a simple chemical evolution model. On the other hand, NGC 6705, and at a lower level Berkeley 81, have higher [{alpha}/Fe] than expected for their ages, location in the disc, and metallicity. These differences might originate from local enrichment processes as explained in the inhomogeneous evolution framework.
149 - L. Spina , S. Randich , L. Magrini 2017
The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open clusters allow us to derive both the radial metallicity distribution and its evolution over time. In this p aper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current inter-stellar medium metallicity. We used the products of the Gaia-ESO Survey analysis of 12 young regions (age<100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. All the pre-main-sequence clusters considered in this paper have close-to-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way.
It has recently been suggested that all giant stars with mass below 2 $M_{odot}$ suffer an episode of surface lithium enrichment between the tip of the red giant branch (RGB) and the red clump (RC). We test if the above result can be confirmed in a s ample of RC and RGB stars that are members of open clusters. We discuss Li abundances in six open clusters with ages between 1.5 and 4.9 Gyr (turn-off masses between 1.1 and 1.7 $M_{odot}$). These observations are compared with the predictions of different models that include rotation-induced mixing, thermohaline instability, mixing induced by the first He flash, and energy losses by neutrino magnetic moment. In six clusters, we find about 35% RC stars with Li abundances that are similar or higher than those of upper RGB stars. This can be a sign of fresh Li production. Because of the extra-mixing episode connected to the luminosity bump, the expectation was for RC stars to have systematically lower surface Li abundances. However, we cannot confirm that the possible Li production is ubiquitous. For about 65% RC giants we can only determine abundance upper limits that could be hiding very low Li abundances. Our results indicate a possible production of Li during the RC, at levels that would not classify the stars as Li rich. Determination of their carbon isotopic ratio would help to confirm that the RC giants have suffered extra mixing followed by Li enrichment. The Li abundances of the RC stars can be qualitatively explained by the models with an additional mixing episode close to the He flash.
124 - L. Bravi , E. Zari , G. G. Sacco 2018
Context. The origin and dynamical evolution of star clusters is an important topic in stellar astrophysics. Several models have been proposed to understand the formation of bound and unbound clusters and their evolution, and these can be tested by ex amining the kinematical and dynamical properties of clusters over a wide range of ages and masses. Aims. We use the Gaia-ESO Survey products to study four open clusters (IC 2602, IC 2391, IC 4665, and NGC 2547) that lie in the age range between 20 and 50 Myr. Methods. We employ the gravity index $gamma$ and the equivalent width of the lithium line at 6708 $AA$, together with effective temperature $rm{T_{eff}}$, and the metallicity of the stars in order to discard observed contaminant stars. Then, we derive the cluster radial velocity dispersions $sigma_c$, the total cluster mass $rm{M}_{tot}$, and the half mass radius $r_{hm}$. Using the $Gaia$-DR1 TGAS catalogue, we independently derive the intrinsic velocity dispersion of the clusters from the astrometric parameters of cluster members. Results. The intrinsic radial velocity dispersions derived by the spectroscopic data are larger than those derived from the TGAS data, possibly due to the different masses of the considered stars. Using $rm{M}_{tot}$ and $r_{hm}$ we derive the virial velocity dispersion $sigma_{vir}$ and we find that three out of four clusters are supervirial. This result is in agreement with the hypothesis that these clusters are dispersing, as predicted by the residual gas expulsion scenario. However, recent simulations show that the virial ratio of young star clusters may be overestimated if it is determined using the global velocity dispersion, since the clusters are not fully relaxed.
81 - G. Casali , L. Spina , L. Magrini 2020
In the era of large spectroscopic surveys, massive databases of high-quality spectra provide tools to outline a new picture of our Galaxy. In this framework, an important piece of information is provided by our ability to infer stellar ages. We aim t o provide empirical relations between stellar ages and abundance ratios for a sample of solar-like stars. We investigate the dependence on metallicity, and we apply our relations to Gaia-ESO samples of open clusters and field stars. We analyse high-resolution and high-S/N HARPS spectra of a sample of solar-like stars to obtain precise determinations of their atmospheric parameters and abundances through differential spectral analysis and age through isochrone fitting. We investigate the relations between ages and abundance ratios. For the abundance ratios with a steeper dependence on age, we perform multivariate linear regressions, including the dependence on metallicity. We apply our relations to a sample of open clusters located in 4<R$_{GC}$<16 kpc. Using them, we are able to recover the literature ages only for clusters located at R$_{GC}$>7 kpc. In these clusters, the content of s-elements is lower than expected from chemical evolution models, and consequently the [s/$alpha$] are lower than in clusters of the same age located in the solar neighbourhood. With our chemical evolution model and a set of empirical yields, we suggest that a strong dependence on the star formation history and metallicity-dependent yields of s-elements can substantially modify the slope of the [s/$alpha$]-[Fe/H]-age relation in different regions of the Galaxy. Our results point towards a non-universal relation [s/$alpha$]-[Fe/H]-age, indicating the existence of relations at different R$_{GC}$ or for different star formation history. A better understanding of the s-process at high metallicity is necessary to fully understand the origin of these variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا