ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement and analysis of nuclear $gamma$-ray production cross sections in proton interactions with Mg, Si and Fe nuclei abundant in astrophysical sites over the incident energy range $E=30-66$ MeV

205   0   0.0 ( 0 )
 نشر من قبل Saad Ouichaoui
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gamma-ray production cross section excitation functions have been measured for $30$, $42$, $54$ and $66$ MeV proton beams accelerated onto targets of astrophysical interest, $^{nat}$C, C + O (Mylar), $^{nat}$Mg, $^{nat}$Si and $^{56}$Fe, at the Sector Separated Cyclotron (SSC) of iThemba LABS (near Cape Town, South Africa). The AFRODITE array equipped with 8 Compton suppressed HPGe clover detectors was used to record $gamma$-ray data. For known, intense $gamma$-ray lines the previously reported experimental data measured up to $E_{p}simeq$ $25$ MeV at the Washington and Orsay tandem accelerators were extended to higher proton energies. Our experimental data for the last 3 targets are reported here and discussed with respect to previous data and the Murphy textit{et al.} compilation [ApJS 183, 142 (2009)], as well as to predictions of the nuclear reaction code TALYS. The overall agreement between theory and experiment obtained in first-approach calculations using default input parameters of TALYS has been appreciably improved by using modified optical model potential (OMP), deformation, and level density parameters. The OMP parameters have been extracted from theoretical fits to available experimental elastic/inelastic nucleon scattering angular distribution data by means of the coupled-channels reaction code OPTMAN. Experimental data for several new $gamma$-ray lines are also reported and discussed. The astrophysical implications of our results are emphasised.

قيم البحث

اقرأ أيضاً

Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, So uth Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.
Background: Neutron-induced backgrounds are a significant concern for experiments that require extremely low levels of radioactive backgrounds such as direct dark matter searches and neutrinoless double-beta decay experiments. Unmeasured neutron scat tering cross sections are often accounted for incorrectly in Monte Carlo simulations. Purpose: Determine partial gamma-ray production cross sections for (n,xng) reactions in natural argon for incident neutron energies between 1 and 30 MeV. Methods: The broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE) was used used for the measurement. Neutron energies were determined using time-of-flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Results: Partial gamma-ray cross sections were measured for six excited states in Ar-40 and two excited states in Ar-39. Measured (n,xng) cross sections were compared to the TALYS and CoH3 nuclear reaction codes. Conclusions: These new measurements will help to identify potential backgrounds in neutrinoless double-beta decay and dark matter experiments that use argon as a detection medium or shielding. The measurements will also aid in the identification of neutron interactions in these experiments through the detection of gamma rays produced by (n,xng) reactions.
The detection of long-lived radionuclides through ultra-sensitive single atom counting via accelerator mass spectrometry (AMS) offers opportunities for precise measurements of neutron capture cross sections, e.g. for nuclear astrophysics. The techniq ue represents a truly complementary approach, completely independent of previous experimental methods. The potential of this technique is highlighted at the example of the $^{54}$Fe($n, gamma$)$^{55}$Fe reaction. Following a series of irradiations with neutrons from cold and thermal to keV energies, the produced long-lived $^{55}$Fe nuclei ($t_{1/2}=2.744(9)$ yr) were analyzed at the Vienna Environmental Research Accelerator (VERA). A reproducibility of about 1% could be achieved for the detection of $^{55}$Fe, yielding cross section uncertainties of less than 3%. Thus, the new data can serve as anchor points to time-of-flight experiments. We report significantly improved neutron capture cross sections at thermal energy ($sigma_{th}=2.30pm0.07$ b) as well as for a quasi-Maxwellian spectrum of $kT=25$ keV ($sigma=30.3pm1.2$ mb) and for $E_n=481pm53$ keV ($sigma= 6.01pm0.23$ mb). The new experimental cross sections have been used to deduce improved Maxwellian average cross sections in the temperature regime of the common $s$-process scenarios. The astrophysical impact is discussed using stellar models for low-mass AGB stars.
We have studied the high energy gamma-rays produced in the reaction $^{19}$F(p,$alphagamma$)$^{16}$O for incident proton energies from 1.5 to 4.0 MeV over NaF/Ag and CaF$_2$/Ag thin targets in two different sets of data. Gamma-rays were detected with a High Purity Ge detector with an angle of 130$^{o}$ with respect to the beam axis. The cross-sections for the high energy gamma-rays of 6.129, 6.915 and 7.115 MeV have been measured for the whole group between 5 and 7.2 MeV with accuracy better than 10%. A new energy range was covered and more points are included in the cross-sections data base expanding the existing set of data. Results are in agreement with previous measurements in similar conditions.
Cross sections for the strongest gamma-ray emission lines produced in alpha-particle reactions with C, Mg, Si, Fe have been measured in the range E_alpha = 50 - 90 MeV at the center for proton therapy at the Helmholtz-Zentrum Berlin. Data for more th an 60 different gamma-ray lines were determined, with particular efforts for lines that are in cross section compilations/evaluations with astrophysical purpose, and where data exist at lower projectile energies. The data are compared with predictions of a modern nuclear reaction code and cross-section curves of the latest evaluation for gamma-ray line emission in accelerated-particle interactions in solar flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا