ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross Sections for proton induced high energy $gamma$-ray emission (PIGE) in reaction $^{19}$F(p,$alphagamma$)$^{16}$O at incident proton energies between 1.5 and 4 MeV

71   0   0.0 ( 0 )
 نشر من قبل Pablo Cabanelas
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the high energy gamma-rays produced in the reaction $^{19}$F(p,$alphagamma$)$^{16}$O for incident proton energies from 1.5 to 4.0 MeV over NaF/Ag and CaF$_2$/Ag thin targets in two different sets of data. Gamma-rays were detected with a High Purity Ge detector with an angle of 130$^{o}$ with respect to the beam axis. The cross-sections for the high energy gamma-rays of 6.129, 6.915 and 7.115 MeV have been measured for the whole group between 5 and 7.2 MeV with accuracy better than 10%. A new energy range was covered and more points are included in the cross-sections data base expanding the existing set of data. Results are in agreement with previous measurements in similar conditions.

قيم البحث

اقرأ أيضاً

537 - W. Parol , A. Kozela , K. Bodek 2020
Differential cross sections for deuteron breakup $^{1}H(d, pp)n$ reaction were measured for a large set of 243 geometrical configurations at the beam energy of 80 MeV/nucleon. The cross section data are normalized by the luminosity factor obtained on the basis of simultaneous measurement of elastic scattering channel and the existing cross section data for this process. The results are compared to the theoretical calculations modeling nuclear interaction with and without taking into account the three-nucleon force (3NF) and Coulomb interaction. In the validated region of the phase space both the Coulomb force and 3NF play an important role in a good description of the data. There are also regions, where the improvements of description due to including 3NF are not sufficient.
The total cross sections for the 120Te(p,gamma)121I and 120Te(p,n)120I reactions have been measured by the activation method in the effective center-of-mass energies between 2.47 MeV and 7.93 MeV. The targets were prepared by evaporation of 99.4 % is otopically enriched 120Te on Aluminum and Carbon backing foils, and bombarded with proton beams provided by the FN tandem accelerator at the University of Notre Dame. The cross sections and $S$ factors were deduced from the observed gamma ray activity, which was detected off-line by two Clover HPGe detectors mounted in close geometry. The results are presented and compared with the predictions of statistical model calculations using the codes NON-SMOKER and TALYS.
We systematically study total reaction cross sections of carbon isotopes with N=6-16 on a proton target for wide range of incident energies, putting an emphasis on the difference from the case of a carbon target. The analysis includes the reaction cr oss sections of ^{19,20,22}C at 40 AMeV, the data of which have recently been measured at RIKEN. The Glauber theory is used to calculate the reaction cross sections. To describe the intrinsic structure of the carbon isotopes, we use a Slater determinant generated from a phenomenological mean-field potential, and construct the density distributions. To go beyond the simple mean-field model, we adopt two types of dynamical models: One is a core+n model for odd-neutron nuclei, and the other is a core+n+n model for 16C and 22C. We propose empirical formulas which are useful in predicting unknown cross sections.
Gamma-ray excitation functions have been measured for 30, 42, 54 and 66 MeV proton beams accelerated onto C + O (Mylar), Mg, Si, and Fe targets of astrophysical interest at the separate-sector cyclotron of iThemba LABS in Somerset West (Cape Town, So uth Africa). A large solid angle, high energy resolution detection system of the Eurogam type was used to record Gamma-ray energy spectra. Derived preliminary results of Gamma-ray line production cross sections for the Mg, Si and Fe target nuclei are reported and discussed. The current cross section data for known, intense Gamma-ray lines from these nuclei consistently extend to higher proton energies previous experimental data measured up to Ep ~ 25 MeV at the Orsay and Washington tandem accelerators. Data for new Gamma-ray lines observed for the first time in this work are also reported.
The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerator s of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا