ترغب بنشر مسار تعليمي؟ اضغط هنا

A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD

129   0   0.0 ( 0 )
 نشر من قبل Pierluigi Selvelli
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

{We combine the results of our earlier study of the UV characteristics of 18 classical novae (CNe) with data from the literature and with the recent precise distance determinations from the Gaia satellite to investigate the statistical properties of old novae. All final parameters for the sample include a detailed treatment of the errors and their propagation. The physical properties reported here include the absolute magnitudes at maximum and minimum, a new maximum magnitude versus rate of decline (MMRD) relation, and the inclination-corrected 1100--6000-AA accretion disk luminosity. Most importantly, these data have allowed us to derive a homogenous set of accretion rates in quiescence for the 18 novae. All novae in the sample were super-Eddington during outburst, with an average absolute magnitude at maximum of $-7.5pm1.0$. The average absolute magnitude at minimum corrected for inclination is $3.9pm1.0$. The median mass accretion rate is $logdot{M}_{1Modot}=-8.52$ (using $1Modot$ as WD mass for all novae) or $logdot{M}_{M_{WD}}=-8.48$ (using the individual WD masses). These values are lower than those assumed in studies of CNe evolution and appear to attenuate the need for a hibernation hypothesis to interpret the nova phenomenon. We identified a number of correlations among the physical parameters of the quiescent and eruptive phases, some already known but others new and even surprising. Several quantities correlate with the speed class $t_3$ including, unexpectedly, the mass accretion rate ($dot{M)}$. This rate correlates also with the absolute magnitude at minimum corrected for inclination, and with the outburst amplitude, providing new and simple ways to estimate $dot{M}$ through its functional dependence on (more) easily observed quantities. There is no correlation between $dot{M}$ and the orbital period.}



قيم البحث

اقرأ أيضاً

Combining the precise parallaxes and optical photometry delivered by Gaias second data release (Gaia DR2) with the photometric catalogues of PanSTARRS-1, 2MASS, and AllWISE, we derive Bayesian stellar parameters, distances, and extinctions for 265 mi llion stars brighter than G=18. Because of the wide wavelength range used, our results substantially improve the accuracy and precision of previous extinction and effective temperature estimates. After cleaning our results for both unreliable input and output data, we retain 137 million stars, for which we achieve a median precision of 5% in distance, 0.20 mag in V-band extinction, and 245 K in effective temperature for G<14, degrading towards fainter magnitudes (12%, 0.20 mag, and 245 K at G=16; 16%, 0.23 mag, and 260 K at G=17, respectively). We find a very good agreement with the asteroseismic surface gravities and distances of 7000 stars in the Kepler, the K2-C3, and the K2-C6 fields, with stellar parameters from the APOGEE survey, as well as with distances to star clusters. Our results are available through the ADQL query interface of the Gaia mirror at the Leibniz-Institut f{u}r Astrophysik Potsdam (gaia.aip.de) and as binary tables at data.aip.de. As a first application, in this paper we provide distance- and extinction-corrected colour-magnitude diagrams, extinction maps as a function of distance, and extensive density maps, demonstrating the potential of our value-added dataset for mapping the three-dimensional structure of our Galaxy. In particular, we see a clear manifestation of the Galactic bar in the stellar density distributions, an observation that can almost be considered a direct imaging of the Galactic bar.
458 - D. Schonberner , M. Steffen 2019
Individual distances to planetary nebulae are of the utmost relevance for our understanding of post-asymptotic giant-branch evolution because they allow a precise determination of stellar and nebular properties. Also, objects with individual distance s serve as calibrators for the so-called statistical distances based on secondary nebular properties. With independently known distances, it is possible to check empirically our understanding of the formation and evolution of planetary nebulae as suggested by existing hydrodynamical simulations. We compared the expansion parallaxes that have recently been determined for a number of planetary nebulae with the trigonometric parallaxes provided by the Gaia Data Release 2. Except for two out of 11 nebulae, we found good agreement between the expansion and the Gaia trigonometric parallaxes without any systematic trend with distance. Therefore, the Gaia measurements also prove that the correction factors necessary to convert proper motions of shocks into Doppler velocities cannot be ignored. Rather, the size of these correction factors and their evolution with time as predicted by 1-D hydrodynamical models of planetary nebulae is basically validated. These correction factors are generally greater than unity and are different for the outer shell and the inner bright rim of a planetary nebula. The Gaia measurements also confirm earlier findings that spectroscopic methods often lead to an overestimation of the distance. They also show that even modelling of the entire system of star and nebula by means of sophisticated photoionization modeling may not always provide reliable results. The Gaia measurements confirm the basic correctness of the present radiation-hydrodynamics models, which predict that both the shell and the rim of a planetary nebula are two independently expanding entities.
Thanks to the Gaia mission, it will be possible to determine the masses of approximately hundreds of large main belt asteroids with very good precision. We currently have diameter estimates for all of them that can be used to compute their volume and hence their density. However, some of those diameters are still based on simple thermal models, which can occasionally lead to volume uncertainties as high as 20-30%. The aim of this paper is to determine the 3D shape models and compute the volumes for 13 main belt asteroids that were selected from those targets for which Gaia will provide the mass with an accuracy of better than 10%. We used the genetic Shaping Asteroids with Genetic Evolution (SAGE) algorithm to fit disk-integrated, dense photometric lightcurves and obtain detailed asteroid shape models. These models were scaled by fitting them to available stellar occultation and/or thermal infrared observations. We determine the spin and shape models for 13 main belt asteroids using the SAGE algorithm. Occultation fitting enables us to confirm main shape features and the spin state, while thermophysical modeling leads to more precise diameters as well as estimates of thermal inertia values. We calculated the volume of our sample of main-belt asteroids for which the Gaia satellite will provide precise mass determinations. From our volumes, it will then be possible to more accurately compute the bulk density, which is a fundamental physical property needed to understand the formation and evolution processes of small solar system bodies.
Models have long predicted that the frequency-averaged masses of white dwarfs in Galactic classical novae are twice as large as those of field white dwarfs. Only a handful of dynamically well-determined nova white dwarf masses have been published, le aving the theoretical predictions poorly tested. The recurrence time distributions and mass accretion rate distributions of novae are even more poorly known. To address these deficiencies, we have combined our extensive simulations of nova eruptions with the Strope et al (2010) and Schaefer et al (2010) databases of outburst characteristics of Galactic classical and recurrent novae to determine the masses of 92 white dwarfs in novae. We find that the mean mass (frequency averaged mean mass) of 82 Galactic classical novae is 1.06 (1.13) Msun, while the mean mass of 10 recurrent novae is 1.31 Msun. These masses, and the observed nova outburst amplitude and decline time distributions allow us to determine the long-term mass accretion rate distribution of classical novae. Remarkably, that value is just 1.3 x 10^{-10} Msun/yr, which is an order of magnitude smaller than that of cataclysmic binaries in the decades before and after classical nova eruptions. This predicts that old novae become low mass transfer rate systems, and hence dwarf novae, for most of the time between nova eruptions. We determine the mass accretion rates of each of the 10 known Galactic RN, finding them to be in the range 10^{-7} - 10^{-8} $ Msun/yr. We are able to predict the recurrence time distribution of novae and compare it with the predictions of population synthesis models.
We examine parallaxes and distances for Galactic luminous blue variables (LBVs) in Gaia DR2. The sample includes 11 LBVs and 14 LBV candidates. For about half of the sample, DR2 distances are either similar to commonly adopted literature values, or t he DR2 values have large uncertainties. For the rest, reliable DR2 distances differ significantly from values in the literature, and in most cases the Gaia DR2 distance is smaller. Two key results are that the S Doradus instability strip may not be as clearly defined as previously thought, and that there exists a population of LBVs at relatively low luminosities. LBVs seem to occupy a wide swath from the end of the main sequence at the blue edge to 8000 K at the red side, with a spread in luminosity reaching as low as log(L/Lsun)=4.5. The lower-luminosity group corresponds to effective single-star initial masses of 10-25 Msun, and includes objects that have been considered as confirmed LBVs. We discuss implications for LBVs including (1) their instability and origin in binary evolution, (2) connections to some supernova (SN) impostors such as the class of SN 2008S-like objects, and (3) LBVs that may be progenitors of SNe with dense circumstellar material across a wide initial mass range. Although some of the Gaia DR2 distances for LBVs have large uncertainty, this represents the most direct and consistent set of Galactic LBV distance estimates available in the literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا