ﻻ يوجد ملخص باللغة العربية
We propose a many-body index that extends Fredholm index theory to many-body systems. The index is defined for any charge-conserving system with a topologically ordered $p$-dimensional ground state sector. The index is fractional with the denominator given by $p$. In particular, this yields a new short proof of the quantization of the Hall conductance and of Lieb-Schulz-Mattis theorem. In the case that the index is non-integer, the argument provides an explicit construction of Wilson loop operators exhibiting a non-trivial braiding and that can be used to create fractionally charged Abelian anyons.
In this comprehensive study of Kitaevs abelian models defined on a graph embedded on a closed orientable surface, we provide complete proofs of the topological ground state degeneracy, the absence of local order parameters, compute the entanglement e
In these lecture notes, we review the adiabatic theorem in quantum mechanics, focusing on a recent extension to many-body systems. The role of locality is emphasized and the relation to the quasi-adiabatic flow discussed. An important application of
We consider charge transport for interacting many-body systems with a gapped ground state subspace which is finitely degenerate and topologically ordered. To any locality-preserving, charge-conserving unitary that preserves the ground state space, we
We propose an index for pairs of a unitary map and a clustering state on many-body quantum systems. We require the map to conserve an integer-valued charge and to leave the state, e.g. a gapped ground state, invariant. This index is integer-valued an
In this short note, I review some recent results about gapped ground state phases of quantum spin systems and discuss the notion of topological order.