ﻻ يوجد ملخص باللغة العربية
Ensemble models are widely used to solve complex tasks by their decomposition into multiple simpler tasks, each one solved locally by a single member of the ensemble. Decoding of error-correction codes is a hard problem due to the curse of dimensionality, leading one to consider ensembles-of-decoders as a possible solution. Nonetheless, one must take complexity into account, especially in decoding. We suggest a low-complexity scheme where a single member participates in the decoding of each word. First, the distribution of feasible words is partitioned into non-overlapping regions. Thereafter, specialized experts are formed by independently training each member on a single region. A classical hard-decision decoder (HDD) is employed to map every word to a single expert in an injective manner. FER gains of up to 0.4dB at the waterfall region, and of 1.25dB at the error floor region are achieved for two BCH(63,36) and (63,45) codes with cycle-reduced parity-check matrices, compared to the previous best result of the paper Active Deep Decoding of Linear Codes.
We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (H
We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation u
We propose a deep-learning approach for the joint MIMO detection and channel decoding problem. Conventional MIMO receivers adopt a model-based approach for MIMO detection and channel decoding in linear or iterative manners. However, due to the comple
Deep learning (DL) based autoencoder is a promising architecture to implement end-to-end communication systems. One fundamental problem of such systems is how to increase the transmission rate. Two new schemes are proposed to address the limited data
We revisit the idea of using deep neural networks for one-shot decoding of random and structured codes, such as polar codes. Although it is possible to achieve maximum a posteriori (MAP) bit error rate (BER) performance for both code families and for