ترغب بنشر مسار تعليمي؟ اضغط هنا

Probabilistic Amplitude Shaping with Hard Decision Decoding and Staircase Codes

85   0   0.0 ( 0 )
 نشر من قبل Alireza Sheikh
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider probabilistic amplitude shaping (PAS) as a means of increasing the spectral efficiency of fiber-optic communication systems. In contrast to previous works in the literature, we consider probabilistic shaping with hard decision decoding (HDD). In particular, we apply the PAS recently introduced by Bocherer emph{et al.} to a coded modulation (CM) scheme with bit-wise HDD that uses a staircase code as the forward error correction code. We show that the CM scheme with PAS and staircase codes yields significant gains in spectral efficiency with respect to the baseline scheme using a staircase code and a standard constellation with uniformly distributed signal points. Using a single staircase code, the proposed scheme achieves performance within $0.57$--$1.44$ dB of the corresponding achievable information rate for a wide range of spectral efficiencies.



قيم البحث

اقرأ أيضاً

Probabilistic amplitude shaping (PAS) can flexibly vary the spectral efficiency (SE) of fiber-optic systems. In this paper, we demonstrate the application of PAS to bit-wise hard decision decoding (HDD) of product codes (PCs) by finding the necessary conditions to select the PC component codes. We show that PAS with PCs and HDD yields gains up to $2.7$ dB and SE improvement up to approximately $1$ bit/channel use compared to using PCs with uniform signaling and HDD. Furthermore, we employ the recently introduced iterative bounded distance decoding with combined reliability of PCs to improve performance of PAS with PCs and HDD.
Staircase codes play an important role as error-correcting codes in optical communications. In this paper, a low-complexity method for resolving stall patterns when decoding staircase codes is described. Stall patterns are the dominating contributor to the error floor in the original decoding method. Our improvement is based on locating stall patterns by intersecting non-zero syndromes and flipping the corresponding bits. The approach effectively lowers the error floor and allows for a new range of block sizes to be considered for optical communications at a certain rate or, alternatively, a significantly decreased error floor for the same block size. Further, an improved error floor analysis is introduced which provides a more accurate estimation of the contributions to the error floor.
Product codes (PCs) and staircase codes (SCCs) are conventionally decoded based on bounded distance decoding (BDD) of the component codes and iterating between row and column decoders. The performance of iterative BDD (iBDD) can be improved using sof t-aided (hybrid) algorithms. Among these, iBDD with combined reliability (iBDD-CR) has been recently proposed for PCs, yielding sizeable performance gains at the expense of a minor increase in complexity compared to iBDD. In this paper, we first extend iBDD-CR to SCCs. We then propose two novel decoding algorithms for PCs and SCCs which improve upon iBDD-CR. The new algorithms use an extra decoding attempt based on error and erasure decoding of the component codes. The proposed algorithms require only the exchange of hard messages between component decoders, making them an attractive solution for ultra high-throughput fiber-optic systems. Simulation results show that our algorithms based on two decoding attempts achieve gains of up to $0.88$ dB for both PCs and SCCs. This corresponds to a $33%$ optical reach enhancement over iBDD with bit-interleaved coded modulation using $256$ quadrature amplitude modulation.
A new class of folded subspace codes for noncoherent network coding is presented. The codes can correct insertions and deletions beyond the unique decoding radius for any code rate $Rin[0,1]$. An efficient interpolation-based decoding algorithm for t his code construction is given which allows to correct insertions and deletions up to the normalized radius $s(1-((1/h+h)/(h-s+1))R)$, where $h$ is the folding parameter and $sleq h$ is a decoding parameter. The algorithm serves as a list decoder or as a probabilistic unique decoder that outputs a unique solution with high probability. An upper bound on the average list size of (folded) subspace codes and on the decoding failure probability is derived. A major benefit of the decoding scheme is that it enables probabilistic unique decoding up to the list decoding radius.
Ensemble models are widely used to solve complex tasks by their decomposition into multiple simpler tasks, each one solved locally by a single member of the ensemble. Decoding of error-correction codes is a hard problem due to the curse of dimensiona lity, leading one to consider ensembles-of-decoders as a possible solution. Nonetheless, one must take complexity into account, especially in decoding. We suggest a low-complexity scheme where a single member participates in the decoding of each word. First, the distribution of feasible words is partitioned into non-overlapping regions. Thereafter, specialized experts are formed by independently training each member on a single region. A classical hard-decision decoder (HDD) is employed to map every word to a single expert in an injective manner. FER gains of up to 0.4dB at the waterfall region, and of 1.25dB at the error floor region are achieved for two BCH(63,36) and (63,45) codes with cycle-reduced parity-check matrices, compared to the previous best result of the paper Active Deep Decoding of Linear Codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا