ترغب بنشر مسار تعليمي؟ اضغط هنا

Inducing Magnetic Phase Transitions in Monolayer CrI$_3$ via Lattice Deformations

293   0   0.0 ( 0 )
 نشر من قبل Michele Pizzochero
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically thin films of layered chromium triiodide (CrI$_3$) have recently been regarded as suitable candidates to a wide spectrum of technologically relevant applications, mainly owing to the opportunity they offer to achieve a reversible transition between coexisting in-plane ferro- and out-of-plane antiferro-magnetic orders. However, no routes for inducing such a transition have been designed down to the single-layer limit. Here, we address the magnetic response of monolayer CrI$_3$ to in-plane lattice deformations through a combination of isotropic Heisenberg spin Hamiltonians and first-principles calculations. Depending on the magnitude and orientation of the lattice strain exerted, we unveil a series of direction-dependent parallel-to-antiparallel spins crossovers, which yield the emergence of ferromagnetic, Neel antiferromagnetic, zigzag and stripy antiferromagnetic ground states. Additionally, we identify a critical point in the magnetic phase diagram whereby the exchange couplings vanish and the magnetism is quenched. Our work establishes guidelines for extensively tailoring the spin interactions in monolayer CrI$_3$ via strain engineering, and further expands the magnetically ordered phases which can be hosted in a two-dimensional crystal.



قيم البحث

اقرأ أيضاً

The marked interplay between the crystalline, electronic, and magnetic structure of atomically thin magnets has been regarded as the key feature for designing next-generation magneto-optoelectronic devices. In this respect, a detailed understanding o f the microscopic interactions underlying the magnetic responses of these crystals is of primary importance. Here, we combine model Hamiltonians with multi-reference configuration interaction wavefunctions to accurately determine the strength of the spin couplings in the prototypical single-layer magnet CrI$_3$. Our calculations identify the (ferromagnetic) Heisenberg exchange interaction $J = -1.44$ meV as the dominant term, being the inter-site magnetic anisotropies substantially {weaker}. We also find that single-layer CrI$_3$ features an out-of-plane easy axis ensuing from a single-ion anisotropy $A = -0.10$ meV, and predict $g$-tensor in-plane components $g_{xx} = g_{yy} = 1.90$ and out-of-plane component $g_{zz} = 1.92$. In addition, we assess the performance of a dozen widely used density functionals against our accurate correlated wavefunctions {calculations} and available experimental data, thereby establishing reference results for future first-principles investigations. Overall, our findings offer a firm theoretical ground to experimental observations.
Few-layer CrI$_3$ is the most known example among two-dimensional (2D) ferromagnets, which have attracted growing interest in recent years. Despite considerable efforts and progress in understanding the properties of 2D magnets both from theory and e xperiment, the mechanism behind the formation of in-plane magnetic ordering in chromium halides is still under debate. Here, we propose a microscopic orbitally-resolved description of ferromagnetism in monolayer CrI$_3$. Starting from first-principles calculations, we construct a low-energy model for the isotropic Heisenberg exchange interactions. We find that there are two competing contributions to the long-range magnetic ordering in CrI$_3$: (i) Antiferromagnetic Andersons superexchange between half-filled $t_{2g}$ orbitals of Cr atoms; and (ii) Ferromagnetic exchange governed by the Kugel-Khomskii mechanism, involving the transitions between half-filled $t_{2g}$ and empty $e_g$ orbitals. Using numerical calculations, we estimate the exchange interactions in momentum-space, which allows us to restore the spin-wave spectrum, as well as estimate the Curie temperature. Contrary to the nearest-neighbor effective models, our calculations suggest the presence of sharp resonances in the spin-wave spectrum at 5--7 meV, depending on the vertical bias voltage. Our estimation of the Curie temperature in monolayer CrI$_3$ yields 55--65 K, which is in good agreement with experimental data.
The magnetic structures and the magnetic phase transitions in the Mn-doped orthoferrite TbFeO$_3$ studied using neutron powder diffraction are reported. Magnetic phase transitions are identified at $T^mathrm{Fe/Mn}_N approx$ 295~K where a paramagneti c-to-antiferromagnetic transition occurs in the Fe/Mn sublattice, $T^mathrm{Fe/Mn}_{SR} approx$ 26~K where a spin-reorientation transition occurs in the Fe/Mn sublattice and $T^mathrm{R}_N approx$ 2~K where Tb-ordering starts to manifest. At 295~K, the magnetic structure of the Fe/Mn sublattice in TbFe$_{0.5}$Mn$_{0.5}$O$_3$ belongs to the irreducible representation $Gamma_4$ ($G_xA_yF_z$ or $Pbnm$). A mixed-domain structure of ($Gamma_1 + Gamma_4$) is found at 250~K which remains stable down to the spin re-orientation transition at $T^mathrm{Fe/Mn}_{SR}approx$ 26~K. Below 26~K and above 250~K, the majority phase ($> 80%$) is that of $Gamma_4$. Below 10~K the high-temperature phase $Gamma_4$ remains stable till 2~K. At 2~K, Tb develops a magnetic moment value of 0.6(2)~$mu_mathrm{B}/$f.u. and orders long-range in $F_z$ compatible with the $Gamma_4$ representation. Our study confirms the magnetic phase transitions reported already in a single crystal of TbFe$_{0.5}$Mn$_{0.5}$O$_3$ and, in addition, reveals the presence of mixed magnetic domains. The ratio of these magnetic domains as a function of temperature is estimated from Rietveld refinement of neutron diffraction data. Indications of short-range magnetic correlations are present in the low-$Q$ region of the neutron diffraction patterns at $T < T^mathrm{Fe/Mn}_{SR}$. These results should motivate further experimental work devoted to measure electric polarization and magnetocapacitance of TbFe$_{0.5}$Mn$_{0.5}$O$_3$.
We have performed Raman scattering investigations on the high energy magnetic excitations in a BiFeO$_3$ single crystal as a function of both temperature and laser excitation energy. A strong feature observed at 1250 cm$^{-1}$ in the Raman spectra ha s been previously assigned to two phonon overtone. We show here that its unusual frequency shift with the excitation energy and its asymmetric temperature dependent Fano lineshape reveal a strong coupling to magnetic excitations. In the same energy range, we have also identified the two-magnon excitation with a temperature dependence very similar to $alpha$-Fe$_2$O$_3$ hematite.
83 - Mengze Zhu , Tao Hong , Jin Peng 2018
Bilayer ruthenate Ca$_3$(Ru$_{1-x}$Fe$_x$)$_2$O$_7$ ($x$ = 0.05) exhibits an incommensurate magnetic soliton lattice driven by the Dzyaloshinskii-Moriya interaction. Here we report complex field-induced magnetic phase transitions and memory effect in this system via single-crystal neutron diffraction and magnetotransport measurements. We observe first-order incommensurate-to-commensurate magnetic transitions upon applying the magnetic field both along and perpendicular to the propagation axis of the incommensurate spin structure. Furthermore, we find that the metastable states formed upon decreasing the magnetic field depend on the temperature and the applied field orientation. We suggest that the observed field-induced metastability may be ascribable to the quenched kinetics at low temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا