ﻻ يوجد ملخص باللغة العربية
We present the first 3D particle-in-cell simulations of laser driven sheath-based ion acceleration in a kilotesla-level applied magnetic field. The applied magnetic field creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath and results in a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The benefits of adding the magnetic field are downplayed in 2D simulations, which strongly suggests the feasibility of observing magnetic field effects under experimentally relevant conditions.
We present experimental studies on ion acceleration from ultra-thin diamond-like carbon (DLC) foils irradiated by ultra-high contrast laser pulses of energy 0.7 J focussed to peak intensities of 5*10^{19} W/cm^2. A reduction in electron heating is ob
Target normal sheath acceleration (TNSA) is a method employed in laser--matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regio
It is well known that oscillations at the electron plasma frequency may appear due to instability of the plasma sheath near a positively biased electrode immersed in plasma. This instability is caused by transit-time effects when electrons, collected
The sheath formation in a weakly magnetized collisionless electronegative plasma consisting of electrons, negative and positive ions has been numerically investigated using the hydrodynamic equations. The electrons and negative ions are assumed to fo
Using a kilojoule class laser, we demonstrate for the first time that high-contrast picosecond pulses are advantageous for ion acceleration. We show that a laser pulse with optimum duration and a large focal spot accelerates electrons beyond the pond