ﻻ يوجد ملخص باللغة العربية
We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources spectral energy distributions (SED). We identify and locate star-forming, quiescent galaxies, and AGN, as well as colour changes due to spectral features, such as the 4000 AA{} break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ~ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric redshift estimates (likely artifacts imprinted by their spectroscopic training set). We also infer a higher fraction of high redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.
Upcoming imaging surveys, such as LSST, will provide an unprecedented view of the Universe, but with limited resolution along the line-of-sight. Common ways to increase resolution in the third dimension, and reduce misclassifications, include observi
Context. Studies of galaxy pairs can provide valuable information to jointly understand the formation and evolution of galaxies and galaxy groups. Consequently, taking into account the new high precision photo-z surveys, it is important to have relia
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and catastrophic outlier fraction of photometric r
We present a robust method to estimate the redshift of galaxies using Pan-STARRS1 photometric data. Our method is an adaptation of the one proposed by Beck et al. (2016) for the SDSS Data Release 12. It uses a training set of 2313724 galaxies for whi
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the qu