ﻻ يوجد ملخص باللغة العربية
We demonstrate a novel optical microresonator gyroscope whose responsivity to rotation is enhanced by a factor of around $10^4$ by operating close to the critical point of a spontaneous symmetry breaking transition between counterpropagating light. We present a proof-of-principle rotation measurement using a resonator with a diameter of 3 mm. In addition, we characterise the dynamical response of the system to a sinusoidally varying rotation, and show this to be well described by a simple theoretical model. We observe the universal critical behaviors of responsivity enhancement and critical slowing down, both of which are beneficial in an optical gyroscope.
Whispering gallery mode (WGM) microresonators, benefitting from the ultrahigh quality (Q) factors and small mode volumes, could considerably enhance the light-matter interaction, making it an ideal platform for studying a broad range of nonlinear opt
Fiber optic gyroscopes (FOG) based on the Sagnac effect are a valuable tool in sensing and navigation and enable accurate measurements in applications ranging from spacecraft and aircraft to self-driving vehicles such as autonomous cars. As with any
Guided-mode coupling in a microresonator generally manifests itself through avoided crossings of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion by creating two branches that have dispersions o
Optical-frequency combs enable measurement precision at the 20th digit, and accuracy entirely commensurate with their reference oscillator. A new direction in experiments is the creation of ultracompact frequency combs by way of nonlinear parametric
We study the configuration of efficient nonlinear Cerenkov diffraction generated from a one-dimensional nonlinear photonic crystal surface, which underlies the incorporation of both quasi-phase-matching and total internal reflection by the crystal su