ﻻ يوجد ملخص باللغة العربية
As one of the most promising emerging non-volatile memory (NVM) technologies, spin-transfer torque magnetic random access memory (STT-MRAM) has attracted significant research attention due to several features such as high density, zero standby leakage, and nearly unlimited endurance. However, a high-quality test solution is required prior to the commercialization of STT-MRAM. In this paper, we present all STT-MRAM failure mechanisms: manufacturing defects, extreme process variations, magnetic coupling, STT-switching stochasticity, and thermal fluctuation. The resultant fault models including permanent faults and transient faults are classified and discussed. Moreover, the limited test algorithms and design-for-testability (DfT) designs proposed in the literature are also covered. It is clear that test solutions for STT-MRAMs are far from well established yet, especially when considering a defective part per billion (DPPB) level requirement. We present the main challenges on the STT-MRAM testing topic at three levels: failure mechanisms, fault modeling, and test/DfT designs.
As a unique mechanism for MRAMs, magnetic coupling needs to be accounted for when designing memory arrays. This paper models both intra- and inter-cell magnetic coupling analytically for STT-MRAMs and investigates their impact on the write performanc
In this work, we propose FUSE, a novel GPU cache system that integrates spin-transfer torque magnetic random-access memory (STT-MRAM) into the on-chip L1D cache. FUSE can minimize the number of outgoing memory accesses over the interconnection networ
The realistic modeling of STT-MRAM for the simulations of hybrid CMOS/Spintronics devices in comprehensive simulation environments require a full description of stochastic switching processes in state of the art STT-MRAM. Here, we derive an analytica
Spin Transfer Torque MRAMs are attractive due to their non-volatility, high density and zero leakage. However, STT-MRAMs suffer from poor reliability due to shared read and write paths. Additionally, conflicting requirements for data retention and wr
We extensively test a recent protocol to demonstrate quantum fault tolerance on three systems: (1) a real-time simulation of five spin qubits coupled to an environment with two-level defects, (2) a real-time simulation of transmon quantum computers,