ﻻ يوجد ملخص باللغة العربية
Nematic order is an exotic property observed in several strongly correlated systems, such as the iron-based superconductors. Using large-scale density matrix renormalization group (DMRG) techniques, we study at zero-temperature the nematic spin liquid that competes with spin dipolar and quadrupolar orders. We use these nematic orders to characterize different quantum phases and quantum phase transitions. More specifically, we study a spin-$1$ bilinear-biquadratic Heisenberg model on the square lattice with couplings beyond nearest neighbors. We focus on parameter regions around the highly symmetric $SU(3)$ point where the bilinear and biquadratic interactions are equal. With growing further-neighbor biquadratic interactions, we identify different spin dipolar and quadrupolar orders. We find that the DMRG results on cylindrical geometries correctly detect nematicity in different quantum states and accurately characterize the quantum phase transitions among them. Therefore, spin-driven nematicity -- here defined as the spontaneous breaking of the lattice invariance under a 90$^o$ rotation -- is an order parameter which can be studied directly in DMRG calculations in two dimensions in different quantum states.
We study thermodynamic properties as well as the dynamical spin and quadrupolar structure factors of the O(3)-symmetric spin-1 Heisenberg model with bilinear-biquadratic exchange interactions on the triangular lattice. Based on a sign-problem-free qu
The ground state of a hole-doped t-t-J ladder with four legs favors a striped charge distribution. Spin excitation from the striped ground state is known to exhibit incommensurate spin excitation near q=(pi,pi) along the leg direction (qx direction).
The channel-decomposed functional renormalization group (FRG) approach, most recently in the variant of truncated-unity-(TU-)FRG, has so far been used for various two-dimensional model systems. Yet, for many interesting material systems the third spa
We investigate the application of the Density Matrix Renormalization Group (DMRG) to the Hubbard model in momentum-space. We treat the one-dimensional models with dispersion relations corresponding to nearest-neighbor hopping and $1/r$ hopping and th
The real part of optical conductivity, $text{Re}sigma(omega)$, of the Mott insulators has a large amount of information on how spin and charge degrees of freedom interact with each other. By using the time-dependent density-matrix renormalization gro