ﻻ يوجد ملخص باللغة العربية
A simplicial set is said to be non-singular if its non-degenerate simplices are embedded. Let $sSet$ denote the category of simplicial sets. We prove that the full subcategory $nsSet$ whose objects are the non-singular simplicial sets admits a model structure such that $nsSet$ becomes is Quillen equivalent to $sSet$ equipped with the standard model structure due to Quillen. The model structure on $nsSet$ is right-induced from $sSet$ and it makes $nsSet$ a proper cofibrantly generated model category. Together with Thomasons model structure on small categories (1980) and Raptis model structure on posets (2010) these form a square-shaped diagram of Quillen equivalent model categories in which the subsquare of right adjoints commutes.
The Barratt nerve, denoted $B$, is the endofunctor that takes a simplicial set to the nerve of the poset of its non-degenerate simplices. The ordered simplicial complex $BSd, X$, namely the Barratt nerve of the Kan subdivision $Sd, X$, is a triangula
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model
Digital topology is part of the ongoing endeavour to understand and analyze digitized images. With a view to supporting this endeavour, many notions from algebraic topology have been introduced into the setting of digital topology. But some of the mo
The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as par