ﻻ يوجد ملخص باللغة العربية
Digital topology is part of the ongoing endeavour to understand and analyze digitized images. With a view to supporting this endeavour, many notions from algebraic topology have been introduced into the setting of digital topology. But some of the most basic notions from homotopy theory remain largely absent from the digital topology literature. We embark on a development of homotopy theory in digital topology, and define such fundamental notions as function spaces, path spaces, and cofibrations in this setting. We establish digital analogues of basic homotopy-theoretic properties such as the homotopy extension property for cofibrations, and the homotopy lifting property for certain evaluation maps that correspond to path fibrations in the topological setting. We indicate that some depth may be achieved by using these homotopy-theoretic notions to give a preliminary treatment of Lusternik-Schnirelmann category in the digital topology setting. This topic provides a connection between digital topology and critical points of functions on manifolds, as well as other topics from topological dynamics.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model
We study localization at a prime in homotopy type theory, using self maps of the circle. Our main result is that for a pointed, simply connected type $X$, the natural map $X to X_{(p)}$ induces algebraic localizations on all homotopy groups. In order
The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as par
Various concepts and constructions in homotopy theory have been defined in the digital setting. Although there have been several attempts at a definition of a fibration in the digital setting, robust examples of these digital fibrations are few and f
Let F be a field of characteristic different than 2. We establish surjectivity of Balmers comparison map rho^* from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor-Witt