ترغب بنشر مسار تعليمي؟ اضغط هنا

Homotopy Theory in Digital Topology

109   0   0.0 ( 0 )
 نشر من قبل Gregory Lupton
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Digital topology is part of the ongoing endeavour to understand and analyze digitized images. With a view to supporting this endeavour, many notions from algebraic topology have been introduced into the setting of digital topology. But some of the most basic notions from homotopy theory remain largely absent from the digital topology literature. We embark on a development of homotopy theory in digital topology, and define such fundamental notions as function spaces, path spaces, and cofibrations in this setting. We establish digital analogues of basic homotopy-theoretic properties such as the homotopy extension property for cofibrations, and the homotopy lifting property for certain evaluation maps that correspond to path fibrations in the topological setting. We indicate that some depth may be achieved by using these homotopy-theoretic notions to give a preliminary treatment of Lusternik-Schnirelmann category in the digital topology setting. This topic provides a connection between digital topology and critical points of functions on manifolds, as well as other topics from topological dynamics.



قيم البحث

اقرأ أيضاً

Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
We study localization at a prime in homotopy type theory, using self maps of the circle. Our main result is that for a pointed, simply connected type $X$, the natural map $X to X_{(p)}$ induces algebraic localizations on all homotopy groups. In order to prove this, we further develop the theory of reflective subuniverses. In particular, we show that for any reflective subuniverse $L$, the subuniverse of $L$-separated types is again a reflective subuniverse, which we call $L$. Furthermore, we prove results establishing that $L$ is almost left exact. We next focus on localization with respect to a map, giving results on preservation of coproducts and connectivity. We also study how such localizations interact with other reflective subuniverses and orthogonal factorization systems. As key steps towards proving the main theorem, we show that localization at a prime commutes with taking loop spaces for a pointed, simply connected type, and explicitly describe the localization of an Eilenberg-Mac Lane space $K(G,n)$ with $G$ abelian. We also include a partial converse to the main theorem.
The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as par t of the defining structure of an operad and not as the underlying category. We introduce a new dual category of higher cooperads, a new higher bar-cobar adjunction with the category of operads, and a new higher notion of homotopy operads, for which we establish the relevant homotopy properties. For instance, the higher bar-cobar construction provides us with a cofibrant replacement functor for operads over any ring. All these constructions are produced conceptually by applying the curved Koszul duality for colored operads. This paper is a first step toward a new Koszul duality theory for operads, where the action of the symmetric groups is properly taken into account.
Various concepts and constructions in homotopy theory have been defined in the digital setting. Although there have been several attempts at a definition of a fibration in the digital setting, robust examples of these digital fibrations are few and f ar between. In this paper, we develop a digital Hopf fibration within the category of tolerance spaces. By widening our category to that of tolerance spaces, we are able to give a construction of this digital Hopf fibration which mimics the smooth setting.
Let F be a field of characteristic different than 2. We establish surjectivity of Balmers comparison map rho^* from the tensor triangular spectrum of the homotopy category of compact motivic spectra to the homogeneous Zariski spectrum of Milnor-Witt K-theory. We also comment on the tensor triangular geometry of compact cellular motivic spectra, producing in particular novel field spectra in this category. We conclude with a list of questions about the structure of the tensor triangular spectrum of the stable motivic homotopy category.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا