ﻻ يوجد ملخص باللغة العربية
Deep neural networks (DNNs) have shown very promising results for various image restoration (IR) tasks. However, the design of network architectures remains a major challenging for achieving further improvements. While most existing DNN-based methods solve the IR problems by directly mapping low quality images to desirable high-quality images, the observation models characterizing the image degradation processes have been largely ignored. In this paper, we first propose a denoising-based IR algorithm, whose iterative steps can be computed efficiently. Then, the iterative process is unfolded into a deep neural network, which is composed of multiple denoisers modules interleaved with back-projection (BP) modules that ensure the observation consistencies. A convolutional neural network (CNN) based denoiser that can exploit the multi-scale redundancies of natural images is proposed. As such, the proposed network not only exploits the powerful denoising ability of DNNs, but also leverages the prior of the observation model. Through end-to-end training, both the denoisers and the BP modules can be jointly optimized. Experimental results on several IR tasks, e.g., image denoisig, super-resolution and deblurring show that the proposed method can lead to very competitive and often state-of-the-art results on several IR tasks, including image denoising, deblurring and super-resolution.
In the past decade, sparsity-driven regularization has led to significant improvements in image reconstruction. Traditional regularizers, such as total variation (TV), rely on analytical models of sparsity. However, increasingly the field is moving t
Fingerprint image denoising is a very important step in fingerprint identification. to improve the denoising effect of fingerprint image,we have designs a fingerprint denoising algorithm based on deep encoder-decoder network,which encoder subnet to l
We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatical
Image deblurring has seen a great improvement with the development of deep neural networks. In practice, however, blurry images often suffer from additional degradations such as downscaling and compression. To address these challenges, we propose an
Convolutional neural network has recently achieved great success for image restoration (IR) and also offered hierarchical features. However, most deep CNN based IR models do not make full use of the hierarchical features from the original low-quality