ﻻ يوجد ملخص باللغة العربية
Maintaining coherence of a qubit is of vital importance for realizing a large-scale quantum computer in practice. In this work, we study the central spin decoherence problem in the $XXX$ central spin model (CSM) and focus on the quantum states with different initial entanglement, namely intra-bath entanglement or system-bath entanglement. We analytically obtain their evolutions of fidelity, entanglement, and quantum coherence. When the initial bath spins constitute an $N$-particle entangled state (the Greenberger-Horne-Zeilinger-bath or the $W$-bath), the leading amplitudes of their fidelity evolutions both scale as $mathcal O(1/N)$, which is the same as the case of a fully polarized bath. However, when the central spin is maximally entangled with one of the bath spins, the amplitude scaling of its fidelity evolution declines from $mathcal O(1/N)$ to $mathcal O(1/N^2)$. That implies appropriate initial system-bath entanglement is contributive to suppress central spin decoherence. In addition, with the help of system-bath entanglement, we realize quantum coherence-enhanced dynamics for the central spin where the consumption of bath entanglement is shown to play a central role.
We microscopically model the decoherence dynamics of entangled coherent states under the influence of vacuum fluctuation. We derive an exact master equation with time-dependent coefficients reflecting the memory effect of the environment, by using th
In this article we revisit the theory of open quantum systems from the perspective of fermionic baths. Specifically, we concentrate on the dynamics of a central spin half particle interacting with a spin bath. We have calculated the exact reduced dyn
This study deals with the further development of nuclear spin model of scalable quantum register, which presents the one-dimensional chain of the magnetic atoms with nuclear spins 1/2, substituting the basic atoms in the plate of nuclear spin-free ea
We present a novel method for quantum tomography of multi-qubit states. We apply the method to spin-multi-photon states, which we produce by periodic excitation of a semiconductor quantum-dot- confined spin every 1/4 of its coherent precession period
We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts