ﻻ يوجد ملخص باللغة العربية
In single microdisks, embedded active emitters intrinsically affect the cavity mode of microdisks, which results in a trivial symmetric backscattering and a low controllability. Here we propose a macroscopical control of the backscattering direction by optimizing the cavity size. The signature of positive and negative backscattering directions in each single microdisk is confirmed with two strongly coupled microdisks. Furthermore, the diabolical points are achieved at the resonance of two microdisks, which agrees well with the theoretical calculations considering backscattering directions. The diabolical points in active optical structures pave a way to implement quantum information processing with geometric phase in quantum photonic networks.
Realization of integrated photonic circuits on a single chip requires controlled manipulation and integration of solid-state quantum emitters with nanophotonic components. Previous works focused on emitters embedded in a three-dimensional crystals --
Optical nanostructures have proven to be meritorious for tailoring the emission properties of quantum emitters. However, unavoidable fabrication imperfections may represent a nuisance. Quite remarkably, disorder offers new opportunities since light c
Hexagonal boron nitride (h-BN), a prevalent insulating crystal for dielectric and encapsulation layers in two-dimensional (2D) nanoelectronics and a structural material in 2D nanoelectromechanical systems (NEMS), has also rapidly emerged as a promisi
In the field of cavity optomechanics, proposals for quantum nondemolition (QND) measurements of phonon number provide a promising avenue by which one can study the quantum nature of nanoscale mechanical resonators. Here, we investigate these QND meas
The features of superfluid-Mott insulator phase transition in the array of dissipative nonlinear cavities are analyzed. We show analytically that the coupling to the bath can be reduced to renormalizing the eigenmodes of atom-cavity system. This give