ﻻ يوجد ملخص باللغة العربية
Structured prediction requires manipulating a large number of combinatorial structures, e.g., dependency trees or alignments, either as latent or output variables. Recently, the SparseMAP method has been proposed as a differentiable, sparse alternative to maximum a posteriori (MAP) and marginal inference. SparseMAP returns a combination of a small number of structures, a desirable property in some downstream applications. However, SparseMAP requires a tractable MAP inference oracle. This excludes, e.g., loopy graphical models or factor graphs with logic constraints, which generally require approximate inference. In this paper, we introduce LP-SparseMAP, an extension of SparseMAP that addresses this limitation via a local polytope relaxation. LP-SparseMAP uses the flexible and powerful domain specific language of factor graphs for defining and backpropagating through arbitrary hidden structure, supporting coarse decompositions, hard logic constraints, and higher-order correlations. We derive the forward and backward algorithms needed for using LP-SparseMAP as a hidden or output layer. Experiments in three structured prediction tasks show benefits compared to SparseMAP and Structured SVM.
We propose Differentiable Window, a new neural module and general purpose component for dynamic window selection. While universally applicable, we demonstrate a compelling use case of utilizing Differentiable Window to improve standard attention modu
Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems,
Constraint-based learning reduces the burden of collecting labels by having users specify general properties of structured outputs, such as constraints imposed by physical laws. We propose a novel framework for simultaneously learning these constrain
Autoregressive sequence models achieve state-of-the-art performance in domains like machine translation. However, due to the autoregressive factorization nature, these models suffer from heavy latency during inference. Recently, non-autoregressive se
Restricted Boltzmann machines~(RBMs) and conditional RBMs~(CRBMs) are popular models for a wide range of applications. In previous work, learning on such models has been dominated by contrastive divergence~(CD) and its variants. Belief propagation~(B