ﻻ يوجد ملخص باللغة العربية
We analyze many body localization (MBL) in an interacting one-dimensional system with a deterministic aperiodic potential. Below the threshold value of the potential $h < h_c$, the non-interacting system has single particle mobility edges at $pm E_c$ while for $ h > h_c$ all the single particle states are localized. We demonstrate that even in the presence of single particle mobility edges, the interacting system can have MBL. Our numerical calculation of participation ratio in the Fock space and Shannon entropy shows that both for $h < h_c$ (quarter filled) and $h>h_c$ ($hsim h_c$ and half filled), many body states in the middle of the spectrum are delocalized while the low energy states with $E < E_1$ and the high energy states with $E> E_2$ are localized. Variance of entanglement entropy (EE) also shows divergence at $E_{1,2}$ indicating a transition from MBL to delocalized regime. We also studied eigenstate thermalisation hypothesis (ETH) and found that the low energy many body states, which show area law scaling for EE do not obey ETH. The crossings from volume to area law scaling for EE and from thermal to non-thermal behaviour occurs deep inside the localised regime. For $h gg h_c$, all the many body states remain localized for weak to intermediate strength of interaction and the system shows infinite temperature MBL phase.
Whether the many-body mobility edges can exist in a one-dimensional interacting quantum system is a controversial problem, mainly hampered by the limited system sizes amenable to numerical simulations. We investigate the transition from chaos to loca
Mobility edges, separating localized from extended states, are known to arise in the single-particle energy spectrum of disordered systems in dimension strictly higher than two and certain quasiperiodic models in one dimension. Here we unveil a diffe
We investigate the wave packet dynamics for a one-dimensional incommensurate optical lattice with a special on-site potential which exhibits the mobility edge in a compactly analytic form. We calculate the density propagation, long-time survival prob
The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic result
Many-body localization (MBL) has been widely investigated for both fermions and bosons, it is, however, much less explored for anyons. Here we numerically calculate several physical characteristics related to MBL of a one-dimensional disordered anyon